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Foreword

By Randal E. Bryant

Research in decision procedures started several decades ago, but both their
practical importance and the underlying technology have progressed rapidly
in the last five years. Back in the 1970s, there was a flurry of activity in this
area, mostly centered at Stanford and the Stanford Research Institute (SRI),
motivated by a desire to apply formal logic to problems in artificial intelligence
and software verification. This work laid foundations that are still in use today.
Activity dropped off through the 1980s and 90s, accompanied by a general
pessimism about automated formal methods. A conventional wisdom arose
that computer systems, especially software, were far too complex to reason
about formally.

One notable exception to this conventional wisdom was the success of
applying Boolean methods to hardware verification, beginning in the early
1990s. Tools such as model checkers demonstrated that useful properties could
be proven about industrial scale hardware systems, and that bugs could be
detected that had otherwise escaped extensive simulation. These approaches
improved on their predecessors by employing more efficient logical reasoning
methods, namely ordered binary decision diagrams and Boolean satisfiability
solvers. The importance of considering algorithmic efficiency, and even low-
level concerns such as cache performance became widely recognized as having
a major impact on the size of problems that could be handled.

Representing systems at a detailed Boolean level limited the applicability
of early model checkers to control-intensive hardware systems. Trying to model
data operations, as well as the data and control structures found in software
leads to far too many states, when every bit of a state is viewed as a separate
Boolean signal.

One way to raise the level of abstraction for verifying a system is to view
data in more abstract terms. Rather than viewing a computer word as a
collection of 32 Boolean values, it can be represented as an integer. Rather
than viewing a floating point multiplier as a complex collection of Boolean
functions, many verification tasks can simply view it as an “uninterpreted
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function” computing some repeatable function over its inputs. From this ap-
proach came a renewed interest in decision procedures, automating the process
of reasoning about different mathematical forms. Some of this work revived
methods dating back many years, but alternative approaches also arose that
made use of Boolean methods, exploiting the greatly improved performance of
Boolean satisfiability (SAT) solvers. Most recently, decision procedures have
become quite sophisticated, using the general framework of search-based SAT
solvers, integrated with methods for handling the individual mathematical
theories.

With the combination of algorithmic improvements and the improved per-
formance of computer systems, modern decision procedures can readily handle
problems that far exceed the capacity of their forebearers from the 1970s. This
progress has made it possible to apply formal reasoning to both hardware and
software in ways that disprove the earlier conventional wisdom. In addition,
the many forms of malicious attacks on computer systems have created a pro-
gram execution environment where seemingly minor bugs can yield serious
vulnerabilities, and this has greatly increased the motivation to apply formal
methods to software analysis.

Until now, learning the state of the art in decision procedures required
assimilating a vast amount of literature, spread across journals and confer-
ences in a variety of different disciplines and over multiple decades. Ideas are
scattered throughout these publications, but with no standard terminology or
notation. In addition some approaches have been shown to be unsound, and
many have proven ineffective. I am therefore pleased that Daniel Kroening
and Ofer Strichman have compiled the vast amount of information on deci-
sion procedures into a single volume. Enough progress has been made in the
field that the results will be of interest to those wishing to apply decision
procedures. At the same time, this is a fast moving and active research com-
munity, making the work essential reading for the many researchers in the
field.
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A decision procedure is an algorithm that, given a decision problem, termi-
nates with a correct yes/no answer. In this book, we concentrate on decision
procedures for decidable first-order theories that are useful in the context of
automated verification and reasoning, theorem proving, compiler optimiza-
tion, synthesis, and so forth. Since the ability of these techniques to cope with
problems arising in industry depends critically on decision procedures, this
is a vibrant and prospering research subject for many researchers around the
world, both in academia and in industry. Intel and AMD, for example, are
developing and using theorem provers and decision procedures as part of their
efforts to build circuit verification tools with ever-growing capacity. Microsoft
is developing and routinely using decision procedures in several code analysis
tools.

Despite the importance of decision procedures, one rarely finds a university
course dedicated entirely to this topic; occasionally, it is addressed in courses
on algorithms or on logic for computer science. One of the reasons for this
situation, we believe, is the lack of a textbook summarizing the main results
in the field in an accessible, uniform way. The primary goal of this book is
therefore to serve as a textbook for an advanced undergraduate- or graduate-
level computer science course. It does not assume specific prior knowledge
beyond what is expected from a third-year undergraduate computer science
student. The book may also help graduate students entering the field, as
currently they are required to gather information from what seems to be an
endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, and operations research. These procedures
have to be highly efficient, since the problems they solve are inherently hard.
They never seem to be efficient enough, however: what we want to be able to
prove is always harder than what we can prove. Their asymptotic complexity
and their performance in practice must always be pushed further. These char-
acteristics are what makes this topic so compelling for research and teaching.



VIII Preface

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure – see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.
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2. The theory is either decidable or semidecidable, and more efficiently solv-
able than theories that are more expressive, at least in practice if not in
theory.1

All the theories described in this book fulfill these two conditions. Further-
more, they are all used in practice. We illustrate applications of each theory
with examples representative of real problems, whether they may be verifica-
tion of C programs, verification of hardware circuits, or optimizing compilers.
Background in any of these problem domains is not assumed, however.

Other than in one chapter, all the theories considered are quantifier-free.
The problem of deciding them is NP-complete. In this respect, they can all be
seen as “front ends” of any one of them, for example propositional logic. They
differ from each other mainly in how naturally they can be used for modeling
various decision problems. For example, consider the theory of equality, which
we describe in Chaps. 3 and 4: this theory can express any Boolean combina-
tion of Boolean variables and expressions of the form x1 = x2, where x1 and
x2 are variables ranging over, for example, the natural numbers. The problem
of satisfying an expression in this theory can be reduced to a satisfiability
problem of a propositional logic formula (and vice versa). Hence, there is no
difference between propositional logic and the theory of equality in terms of
their ability to model decision problems. However, many problems are more
naturally modeled with the equality operator and non-Boolean variables.

For each theory that is discussed, there are many alternative decision pro-
cedures in the literature. Effort was made to select those procedures that are
known to be relatively efficient in practice, and at the same time are based on
what we believe to be an interesting idea. In this respect, we cannot claim to
have escaped the natural bias that one has towards one’s own line of research.

Every year, new decision procedures and tools are being published, and
it is impossible to write a book that reports on this moving target of “the
most efficient” decision procedures (the worst-case complexity of most of the
competing procedures is the same). Moreover, many of them have never been
thoroughly tested against one another. We refer readers who are interested in
the latest developments in this field to the SMT-LIB Web page, as well as to
the results of the annual tool competition SMT-COMP (see Appendix A). The
SMT-COMP competitions are probably the best way to stay up to date as to
the relative efficiency of the various procedures and the tools that implement
them. One should not forget, however, that it takes much more than a good
algorithm to be efficient in practice.

The Structure and Nature of This Book

The first chapter is dedicated to basic concepts that should be familiar to
third- or fourth-year computer science students, such as formal proofs, the

1 Terms such as expressive and decidable have precise meanings, and are defined in
the first chapter.
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satisfiability problem, soundness and completeness, and the trade-off between
expressiveness and decidability. It also includes the theoretical basis for the
rest of the book. From Sect. 1.5 onwards, the chapter is dedicated to more
advanced issues that are necessary as a general introduction to the book, and
are therefore recommended even for advanced readers. Each of the 10 chapters
that follow is mostly self-contained, and generally does not rely on references
to other chapters, other than the first introductory chapter. An exception
to this rule is Chap. 4, which relies on definitions and explanations given in
Chap. 3.

The mathematical symbols and notations are mostly local to each chapter.
Each time a new symbol is introduced, it appears in a rounded box in the
margin of the page for easy reference. All chapters conclude with problems,
varying in level of difficulty, and bibliographic notes and a glossary of symbols.

A draft of this book was used as lecture notes for a combined undergradu-
ate and graduate course on decision procedures at the Technion, Israel, at ETH
Zurich, Switzerland, and at Oxford University, UK. The slides that were used
in these courses, as well as links to other resources appear on the book’s Web
page (www.decision-procedures.org). Source code of a C++ library
for rapid development of decision procedures can also be downloaded from
this page. This library provides the necessary infrastructure for programming
many of the algorithms described in this book, as explained in Appendix B.
Implementing one of these algorithms was a requirement in the course, and it
proved successful. It even led several students to their thesis topic.
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1

Introduction and Basic Concepts

While the focus of this book is on algorithms rather than mathematical logic,
the two points of view are inevitably mixed: one cannot truly understand
why a given algorithm is correct without understanding the logic behind it.
This does not mean, however, that logic is a prerequisite, or that without
understanding the fundamentals of logic, it is hard to learn and use these
algorithms. It is similar, perhaps, to a motorcyclist who has the choice of
whether to learn how his or her bike works.

He or she can ride a long way without such knowledge, but at certain
points, when things go wrong or if the bike has to be tuned for a particular
ride, understanding how and why things work comes in handy. And then
again, suppose our motorcyclist does decide to learn mechanics: where should
he or she stop? Is the physics of combustion engines important? Is the “why”
important at all, or just the “how”? Or an even more fundamental question:
should one first learn how to ride a motorcycle and then refer to the basics
when necessary, or learn things “bottom-up”, from principles to mechanics –
from science to engineering – and then to the rules of driving?

The reality is that different people have different needs, tendencies, and
backgrounds, and there is no right way to write a motorcyclist’s manual that
fits all. And things can get messier when one is trying to write a book about
decision procedures which is targeted, on one hand, at practitioners – pro-
grammers who need to know about algorithms that solve their particular
problems – and, on the other hand, at students and researchers who need to
see how these algorithms can be defined in the theoretical framework that
they are accustomed to, namely logic.

This first chapter has been written with both types of reader in mind. It
is a combination of a reference for later chapters and a general introduction.
Section 1.1 describes the two most common approaches to formal reasoning,
namely deduction and enumeration, and demonstrates them with proposi-
tional logic. Section 1.2 serves as a reference for basic terminology such as
validity, satisfiability, soundness and completeness. More basic terminology is
described in Sect. 1.3, which is dedicated to normal forms and some of their
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properties. Up to that point in the chapter, there is no new material. As of
Sect. 1.5, the chapter is dedicated to more advanced issues that are necessary
as a general introduction to the book. Section 1.4 positions the subject which
this book is dedicated to in the theoretical framework in which it is typically
discussed in the literature. This is important mainly for the second type of
reader: those who are interested in entering this field as researchers, and, more
generally, those who are trained to some extent in mathematical logic. This
section also includes a description of the types of problem that we are con-
cerned with in this book, and the standard form in which they are presented
in the following chapters. Section 1.5 describes the trade-off between expres-
siveness and decidability. In Sect. 1.6, we conclude the chapter by discussing
the need for reasoning about formulas with a Boolean structure.

What about the rest of the book? Each chapter is dedicated to a different
first-order theory. We have not yet explained what a theory is, and specifi-
cally what a first-order theory is – this is the role of Sect. 1.4 – but some
examples are still in order, as some intuition as to what theories are is required
before we reach that section in order to understand the direction in which we
are proceeding.

Informally, one may think of a theory as a finite or an infinite set of formu-
las, which are characterized by common grammatical rules, allowed functions
and predicates, and a domain of values. The fact that they are called “first-
order” means only that there is a restriction on the quantifiers (only variables,
rather than sets of variables, can be quantified), but this is mostly irrelevant
to us, because, in all chapters but one, we restrict the discussion to quantifier-
free formulas. The table below lists some of the first-order theories that are
covered in this book.1

Theory name Example formula Chapter

Propositional logic x1 ∧ (x2 ∨ ¬x3) 2
Equality y1 = y2 ∧ ¬(y1 = y3) =⇒ ¬(y1 = y3) 3, 4
Linear arithmetic (2z1 + 3z2 ≤ 5) ∨ (z2 + 5z2 − 10z3 ≥ 6) 5
Bit vectors ((a>> b) & c) < c 6
Arrays (i = j ∧ a[j] = 1) =⇒ a[i] = 1 7
Pointer logic p = q ∧ ∗p = 5 =⇒ ∗q = 5 8
Combined theories (i ≤ j ∧ a[j] = 1) =⇒ a[i] < 2 10

In the next few sections, we use propositional logic, which we assume the
reader is familiar with, in order to demonstrate various concepts that apply
equally to other first-order theories.

1 Here we consider propositional logic as a first-order theory, which is technically
correct, although not common.
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1.1 Two Approaches to Formal Reasoning

The primary problem that we are concerned with is that of the validity (or
satisfiability) of a given formula. Two fundamental strategies for solving this
problem are the following:

• The model-theoretic approach is to enumerate possible solutions from
a finite number of candidates.

• The proof-theoretic approach is to use a deductive mechanism of rea-
soning, based on axioms and inference rules, which together are called
an inference system.

These two directions – enumeration and deduction – are apparent as early
as the first lessons on propositional logic. We dedicate this section to demon-
strating them.

Consider the following three contradicting claims:

1. If x is a prime number greater than 2, then x is odd.
2. It is not the case that x is not a prime number greater than 2.
3. x is not odd.

Denote the statement “x is a prime number greater than 2” by A and the
statement “x is odd” by B. These claims translate into the following propo-
sitional formulas:

A =⇒ B .
¬¬A .
¬B .

(1.1)

We would now like to prove that this set of formulas is indeed inconsistent.

1.1.1 Proof by Deduction

The first approach is to derive conclusions by using an inference system. In-
ference rules relate antecedents to their consequents. For example, the
following are two inference rules, called modus ponens (M.P.) and Contra-
diction:

ϕ1 =⇒ ϕ2 ϕ1

ϕ2
(M.P.) , (1.2)

ϕ ¬ϕ

false
(Contradiction) . (1.3)

The rule M.P. can be read as follows: from ϕ1 =⇒ ϕ2 and ϕ1 being true,
deduce that ϕ2 is true. The formula ϕ2 is the consequent of the rule M.P.
Axioms are inference rules without antecedents:

¬¬ϕ ⇐⇒ ϕ
(Double-negation-AX) . (1.4)

(Axioms are typically written without the separating line above them.) We
can also write a similar inference rule:
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¬¬ϕ

ϕ
(Double-negation) . (1.5)

(Double-negation-AX and Double-negation are not the same, because
the latter is not symmetric.) Many times, however, axioms and inference rules
are interchangeable, so there is not always a sharp distinction between them.

The inference rules and axioms above are expressed with the help of ar-
bitrary formula symbols (such as ϕ1 and ϕ2 in (1.2)). In order to use them
for proving a particular theorem, they need to be instantiated , which means
that these arbitrary symbols are replaced with specific variables and formulas
that are relevant to the theorem that we wish to prove. For example, the in-
ference rules (1.2), (1.3), and (1.5) can be instantiated such that false, i.e.,
a contradiction, can be derived from the set of formulas in (1.1):

(1) A =⇒ B (premise)
(2) ¬¬A (premise)
(3) A (2; Double-negation)
(4) ¬B (premise)
(5) B (1, 3; M.P.)
(6) false (4, 5; Contradiction) .

(1.6)

Here, in step (3), ϕ in the rule Double-negation is instantiated with A. The
antecedent ϕ1 in the rule M.P. is instantiated with A, and ϕ2 is instantiated
with B.

More complicated theorems may require more complicated inference sys-
tems. This raises the question of whether everything that can be proven with a
given inference system is indeed valid (in this case the system is called sound),
and whether there exists a proof of validity using the inference system for ev-
ery valid formula (in this case it is called complete). These questions are
fundamental for every deduction system; we delay further discussion of this
subject and a more precise definition of these terms to Sect. 1.2.

While deductive methods are very general, they are not always the most
convenient or the most efficient way to know whether a given formula is valid.

1.1.2 Proof by Enumeration

The second approach is relevant if the problem of checking whether a for-
mula is satisfiable can be reduced to a problem of searching for a satisfying
assignment within a finite set of options. This is the case, for example, if the
variables range over a finite domain,2 such as in propositional logic. In the
case of propositional logic, enumerating solutions can be done using truth
tables, as demonstrated by the following example:

2 A finite domain is a sufficient but not a necessary condition. In many cases, even
if the domain is infinite, it is possible to find a bound such that if there exists
a satisfying assignment, then there exists one within this bound. Theories that
have this property are said to have the small-model property.

mei
高亮
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A B (A =⇒ B) (A =⇒ B) ∧A (A =⇒ B) ∧A ∧ ¬B

1 1 1 1 0
1 0 0 0 0
0 1 1 0 0
0 0 1 0 0

The rightmost column, which represents the formula in our example (see (1.1)),
is not satisfied by any one of the four possible assignments, as expected.

1.1.3 Deduction and Enumeration

The two basic approaches demonstrated above, deduction and enumeration,
go a long way, and in fact are major subjects in the study of logic. In practice,
many decision procedures are not based on explicit use of either enumeration
or deduction. Yet, typically their actions can be understood as performing one
or the other (or both) implicitly, which is particularly helpful when arguing
for their correctness.

1.2 Basic Definitions

We begin with several basic definitions that are used throughout the book.
Some of the definitions that follow do not fully coincide with those that are
common in the study of mathematical logic. The reason for these gaps is
that we focus on quantifier-free formulas, which enables us to simplify various
definitions. We discuss these issues further in Sect. 1.4.

Definition 1.1 (assignment). Given a formula ϕ, an assignment of ϕ from
a domain D is a function mapping ϕ’s variables to elements of D. An assign-
ment to ϕ is full if all of ϕ’s variables are assigned, and partial otherwise.

In this definition, we assume that there is a single domain for all variables.
The definition can be trivially extended to the case in which different variables
have different domains.

Definition 1.2 (satisfiability, validity and contradiction). A formula
is satisfiable if there exists an assignment of its variables under which the
formula evaluates to true. A formula is a contradiction if it is not satisfiable.
A formula is valid (also called a tautology) if it evaluates to true under all
assignments.

What does it mean that a formula “evaluates to true” under an assignment?
To evaluate a formula, one needs a definition of the semantics of the various
functions and predicates in the formula. In propositional logic, for example,
the semantics of the propositional connectives is given by truth tables, as
presented above. Indeed, given an assignment of all variables in a propositional
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formula, a truth table can be used for checking whether it satisfies a given
formula, or, in other words, whether the given formula evaluates to true
under this assignment.

It is not hard to see that a formula ϕ is valid if and only if ¬ϕ is a
contradiction. Although somewhat trivial, this is a very useful observation,
because it means that we can check whether a formula is valid by checking
instead whether its negation is a contradiction, i.e., not satisfiable.

Example 1.3. The propositional formula

A ∧B (1.7)

is satisfiable because there exists an assignment, namely {A �→ true, B �→
true}, which makes the formula evaluate to true. The formula

(A =⇒ B) ∧A ∧ ¬B (1.8)

is a contradiction, as we saw earlier: no assignment satisfies it. On the other
hand, the negation of this formula, i.e.,

¬((A =⇒ B) ∧A ∧ ¬B) , (1.9)

is valid: every assignment satisfies it.

Given a formula ϕ and an assignment α of its variables, we write α |= ϕ to
�

�

�

�

α |= ϕ
denote that α satisfies ϕ. If a formula ϕ is valid (and hence, all assignments
satisfy it), we write |= ϕ.3

�

�

�

�

|= ϕ

Definition 1.4 (the decision problem for formulas). The decision prob-
lem for a given formula ϕ is to determine whether ϕ is valid.

Given a theory T , we are interested in a procedure4 that terminates with
�

�

�

�
T

a correct answer to the decision problem, for every formula of the theory T .5

This can be formalized with a generalization of the notions of “soundness”
and “completeness” that we saw earlier in the context of inference systems.
These terms can be defined for the more general case of procedures as follows:

3 Recall that the discussion here refers to propositional logic. In the more general
case, we are not talking about assignments, rather about structures that may
or may not satisfy a formula. In that case, the notation |= ϕ means that all
structures satisfy ϕ. These terms are explained later in Sect. 1.4.

4 We follow the convention by which a procedure does not necessarily terminate,
whereas an algorithm terminates. This may cause confusion, because a “decision
procedure” is by definition terminating, and thus should actually be called a
“decision algorithm”. This confusion is rooted in the literature, and we follow it
here.

5 Every theory is defined over a set of symbols (e.g., linear arithmetic is defined
over symbols such as “+” and “≥”). By saying “every formula of the theory” we
mean every formula that is restricted to the symbols of the theory. This will be
explained in more detail in Sect. 1.4.
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Definition 1.5 (soundness of a procedure). A procedure for the decision
problem is sound if when it returns “Valid”, the input formula is valid.

Definition 1.6 (completeness of a procedure). A procedure for the deci-
sion problem is complete if

• it always terminates, and
• it returns “Valid” when the input formula is valid.

Definition 1.7 (decision procedure). A procedure is called a decision pro-
cedure for T if it is sound and complete with respect to every formula of T .

Definition 1.8 (decidability of a theory). A theory is decidable if and
only if there is a decision procedure for it.

Given these definitions, we are able to classify procedures according to whether
they are sound and complete or only sound. It is rarely the case that unsound
procedures are of interest. Ideally, we would always like to have a decision pro-
cedure, as defined above. However, sometimes either this is not possible (if the
problem is undecidable) or the problem is easier to solve with an incomplete
procedure. Some incomplete procedures are categorized as such because they
do not always terminate (or they terminate with a “don’t know” answer).
However, in many practical cases, they do terminate. Thus, completeness can
also be thought of as a quantitative property rather than a binary one.

All the theories that we consider in this book are decidable. Once a theory
is decidable, the next question is how difficult it is to decide it. A common
measure is that of the worst-case or average-case complexity, parameterized by
certain characteristics of the input formula, for example its size. One should
distinguish between the complexity of a problem and the complexity of an
algorithm. For example, most of the decision problems that we consider in
this book are in the same complexity class, namely they are NP-complete, but
we present different algorithms with different worst-case complexities to solve
them. Moreover, since the worst-case complexities of alternative algorithms
are frequently the same, we take a pragmatic point of view: is a given decision
procedure faster than its alternatives on a significant set of real benchmark
formulas?

Comparing decision procedures with the same worst-case complexity is
problematic: it is rare that one procedure dominates another. The common
practice is to consider a decision procedure relevant if it is able to perform
faster than others on some significant subset of public benchmarks, or on some
well-defined subclass of problems. When there is no way to predict the relative
performance of procedures without actually running them, they can be run in
parallel, with a “first-to-end kills all others” policy. This is a common practice
in industry.
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1.3 Normal Forms and Some of Their Properties

The term normal form, in the context of formulas, is commonly used to
indicate that a formula has certain syntactic properties. In this chapter, we
introduce normal forms that refer to the Boolean structure of the formula. It is
common to begin the process of deciding whether a given formula is satisfiable
by transforming it to some normal form that the decision procedure is designed
to work with. In order to argue that the overall procedure is correct, we need
to show that the transformation preserves satisfiability. The relevant term for
describing this relation is the following.

Definition 1.9 (equisatisfiability). Two formulas are equisatisfiable if they
are both satisfiable or they are both unsatisfiable.

The basic blocks of a first-order formula are its predicates, also called
the atoms of the formula. For example, Boolean variables are the atoms of
propositional logic, whereas equalities of the form xi = xj are the atoms of
the theory of equality that is studied in Chap. 4.

Definition 1.10 (negation normal form (NNF)). A formula is in nega-
tion normal form (NNF) if negation is allowed only over atoms, and ∧,∨,¬
are the only allowed Boolean connectives.

For example, ¬(x1 ∨ x2) is not an NNF formula, because the negation is
applied to a subformula which is not an atom.

Every quantifier-free formula with a Boolean structure can be transformed
in linear time to NNF, by rewriting =⇒ ,

(a =⇒ b) ≡ (¬a ∨ b) , (1.10)

and applying repeatedly what are known as De Morgan’s rules,

¬(a ∨ b) ≡ (¬a ∧ ¬b) ,
¬(a ∧ b) ≡ (¬a ∨ ¬b) .

(1.11)

In the case of the formula above, this results in ¬x1 ∧ ¬x2.

Definition 1.11 (literal). A literal is either an atom or its negation. We
say that a literal is negative if it is a negated atom, and positive otherwise.

For example, in the propositional-logic formula

(a ∨ ¬b) ∧ ¬c , (1.12)

the set of literals is {a,¬b,¬c}, where the last two are negative. In the theory
of equality, where the atoms are equality predicates, a set of literals can be
{x1 = x2,¬(x1 = x3),¬(x2 = x1)}.

Literals are syntactic objects. The set of literals of a given formula changes
if we transform it by applying De Morgan’s rules. Formula (1.12), for example,
can be written as ¬(¬a ∧ b) ∧ ¬c, which changes its set of literals.
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Definition 1.12 (state of a literal under an assignment). A positive
literal is satisfied if its atom is assigned true. Similarly, a negative literal is
satisfied if its atom is assigned false.

Definition 1.13 (pure literal). A literal is called pure in a formula ϕ, if
all occurrences of its variable have the same sign.

In many cases, it is necessary to refer to the set of a formula’s literals as if
this formula were in NNF. In such cases, either it is assumed that the input
formula is in NNF (or transformed to NNF as a first step), or the set of literals
in this form is computed indirectly. This can be done by simply counting the
number of negations that nest each atom instance: it is negative if and only
if this number is odd.

For example, ¬x1 is a literal in the NNF of

ϕ := ¬(¬x1 =⇒ x2) , (1.13)

because there is an occurrence of x1 in ϕ that is nested in three negations
(the fact that x1 is on the the left-hand side of an implication is counted as a
negation). It is common in this case to say that the polarity (also called the
phase) of this occurrence is negative.

Theorem 1.14 (monotonicity of NNF). Let ϕ be a formula in NNF and
let α be an assignment of its variables. Let the positive set of α with respect to
ϕ, denoted pos(α,ϕ), be the literals that are satisfied by α. For every assign-

�

�

�

�
pos

ment α′ to ϕ’s variables such that pos(α,ϕ) ⊆ pos(α′, ϕ), α |= ϕ =⇒ α′ |= ϕ.

Figure 1.1 illustrates this theorem: increasing the set of literals satisfied by
an assignment maintains satisfiability. It does not maintain unsatisfiability,
however: it can turn an unsatisfying assignment into a satisfying one.

α α |= ϕ =⇒ α′ |= ϕα′

Fig. 1.1. Illustration of Theorem 1.14. The ellipses correspond to the sets of literals
satisfied by α and α′, respectively

The proof of this theorem is left as an exercise (Problem 1.3).

Example 1.15. Let
ϕ := (¬x ∧ y) ∨ z (1.14)

be an NNF formula. Consider the following assignments and their correspond-
ing positive sets with respect to ϕ:
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α := {x �→ 0, y �→ 1, z �→ 0} pos(α,ϕ) := {¬x, y}
α′ := {x �→ 0, y �→ 1, z �→ 1} pos(α′, ϕ) := {¬x, y, z} .

(1.15)

By Theorem 1.14, since α |= ϕ and pos(α,ϕ) ⊆ pos(α′, ϕ), then α′ |= ϕ.
Indeed, α′ |= ϕ.

We now describe two very useful restrictions of NNF: disjunctive normal
form (DNF) and conjunctive normal form (CNF).

Definition 1.16 (disjunctive normal form (DNF)). A formula is in dis-
junctive normal form if it is a disjunction of conjunctions of literals, i.e., a
formula of the form ∨

i

(∧

j

lij
)

, (1.16)

where lij is the j-th literal in the i-th term (a term is a conjunction of literals).

Example 1.17. In propositional logic, l is a Boolean literal, i.e., a Boolean
variable or its negation. Thus the following formula over Boolean variables a,
b, c, and d is in DNF:

(a ∧ c ∧ ¬b) ∨
(¬a ∧ d) ∨
(b ∧ ¬c ∧ ¬d) ∨

...

(1.17)

In the theory of equality, the atoms are equality predicates. Thus, the following
formula is in DNF:

((x1 = x2) ∧ ¬(x2 = x3) ∧ ¬(x3 = x1)) ∨
(¬(x1 = x4) ∧ (x4 = x2)) ∨
((x2 = x3) ∧ ¬(x3 = x4) ∧ ¬(x4 = x1)) ∨

...

(1.18)

Every formula with a Boolean structure can be transformed into DNF, while
potentially increasing the size of the formula exponentially. The following
example demonstrates this exponential ratio.

Example 1.18. The following formula is of length linear in n:

(x1 ∨ x2) ∧ · · · ∧ (x2n−1 ∨ x2n) . (1.19)

The length of the equivalent DNF, however, is exponential in n, since every
new binary clause (a disjunction of two literals) doubles the number of terms
in the equivalent DNF, resulting, overall, in 2n terms:
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(x1 ∧ x3 ∧ · · · ∧ x2n−3 ∧ x2n−1) ∨
(x1 ∧ x3 ∧ · · · ∧ x2n−3 ∧ x2n) ∨
(x1 ∧ x3 ∧ · · · ∧ x2n−2 ∧ x2n) ∨

...

(1.20)

Although transforming a formula to DNF can be too costly in terms of
computation time, it is a very natural way to decide formulas with an arbitrary
Boolean structure.

Suppose we are given a disjunctive linear arithmetic formula, that is, a
Boolean structure in which the atoms are linear inequalities over the reals.
We know how to decide whether a conjunction of such literals is satisfiable:
there is a known method called simplex that can give us this answer. In order
to use the simplex method to solve the more general case in which there are
also disjunctions in the formula, we can perform syntactic case-splitting.
This means that the formula is transformed into DNF, and then each term
is solved separately. Each such term contains a conjunction of literals, a form
which we know how to solve. The overall formula is satisfiable, of course, if
any one of the terms is satisfiable. Semantic case-splitting, on the other
hand, refers to techniques that split the search space, in the case where the
variables are finite (“first the case in which x = 0, then the case in which
x = 1 . . .”).

The term case-splitting (without being prefixed with “syntactic”) usually
refers in the literature to either syntactic case-splitting or a “smart” imple-
mentation thereof. Indeed, many of the cases that are generated in syntactic
case-splitting are redundant, i.e., they share a common subset of conjuncts
that contradict each other. Efficient decision procedures should somehow avoid
replicating the process of deducing this inconsistency, or, in other words, they
should be able to learn, as demonstrated in the following example.

Example 1.19. Consider the following formula:

ϕ := (a = 1 ∨ a = 2) ∧ a ≥ 3 ∧ (b ≥ 4 ∨ b ≤ 0) . (1.21)

The DNF of ϕ consists of four terms:

(a = 1 ∧ a ≥ 3 ∧ b ≥ 4) ∨
(a = 2 ∧ a ≥ 3 ∧ b ≥ 4) ∨
(a = 1 ∧ a ≥ 3 ∧ b ≤ 0) ∨
(a = 2 ∧ a ≥ 3 ∧ b ≤ 0) .

(1.22)

These four cases can each be discharged separately, by using a decision proce-
dure for linear arithmetic (Chap. 5). However, observe that the first and the
third case share the two conjuncts a = 1 and a ≥ 3, which already makes the
case unsatisfiable. Similarly, the second and the fourth case share the con-
juncts a = 2 and a ≥ 3. Thus, with the right learning mechanism, two of the
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four calls to the decision procedure can be avoided. This is still case-splitting,
but more efficient than a plain transformation to DNF.

The problem of reasoning about formulas with a general Boolean structure
is a common thread throughout this book.

Definition 1.20 (conjunctive normal form (CNF)). A formula is in con-
junctive normal form if it is a conjunction of disjunctions of literals, i.e., it
has the form ∧

i

(∨

j

lij
)

, (1.23)

where lij is the j-th literal in the i-th clause (a clause is a disjunction of
literals).

Every formula with a Boolean structure can be transformed into an equiv-
alent CNF formula, while potentially increasing the size of the formula ex-
ponentially. Yet, any propositional formula can also be transformed into an
equisatisfiable CNF formula with only a linear increase in the size of the for-
mula. The price to be paid is n new Boolean variables, where n is the number
of logical gates in the formula. This transformation is done via Tseitin’s
encoding [195].

Tseitin suggested that one new variable should be added for every logical
gate in the original formula, and several clauses to constrain the value of this
variable to be equal to the gate it represents, in terms of the inputs to this
gate. The original formula is satisfiable if and only if the conjunction of these
clauses together with the new variable associated with the topmost operator
is satisfiable. This is best illustrated with an example.

Example 1.21. Given a propositional formula

x1 =⇒ (x2 ∧ x3) , (1.24)

with Tseitin’s encoding we assign a new variable to each subexpression, or,
in other words, to each logical gate, for example AND (∧), OR (∨), and
NOT (¬). For this example, let us assign the variable a2 to the AND gate
(corresponding to the subexpression x2 ∧ x3) and a1 to the IMPLICATION
gate (corresponding to x1 =⇒ a2), which is also the topmost operator of this
formula. Figure 1.2 illustrates the derivation tree of our formula, together
with these auxiliary variables in square brackets.

We need to satisfy a1, together with two equivalences,

a1 ⇐⇒ (x1 =⇒ a2) ,
a2 ⇐⇒ (x2 ∧ x3) .

(1.25)

The first equivalence can be rewritten in CNF as
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∧

=⇒ [a1]

x2

x1

x3

[a2]

Fig. 1.2. Tseitin’s encoding. Assigning an auxiliary variable to each logical gate
(shown here in square brackets) enables us to translate each propositional formula
to CNF, while increasing the size of the formula only linearly

(a1 ∨ x1) ∧
(a1 ∨ ¬a2) ∧
(¬a1 ∨ ¬x1 ∨ a2) ,

(1.26)

and the second equivalence can be rewritten in CNF as

(¬a2 ∨ x2) ∧
(¬a2 ∨ x3) ∧
(a2 ∨ ¬x2 ∨ ¬x3) .

(1.27)

Thus, the overall CNF formula is the conjunction of (1.26), (1.27), and the
unit clause

(a1) , (1.28)

which represents the topmost operator.

There are various optimizations that can be performed in order to reduce
the size of the resulting formula and the number of additional variables. For
example, consider the following formula:

x1 ∨ (x2 ∧ x3 ∧ x4 ∧ x5) . (1.29)

With Tseitin’s encoding, we need to introduce four auxiliary variables. The
encoding of the clause on the right-hand side, however, can be optimized to
use just a single variable, say a2:

a2 ⇐⇒ (x2 ∧ x3 ∧ x4 ∧ x5) . (1.30)

In CNF,
(¬a2 ∨ x2) ∧
(¬a2 ∨ x3) ∧
(¬a2 ∨ x4) ∧
(¬a2 ∨ x5) ∧
(a2 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5) .

(1.31)

In general, we can encode a conjunction of n literals with a single variable and
n + 1 clauses, which is an improvement over the original encoding, requiring
n− 1 auxiliary variables and 3(n− 1) clauses.
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Such savings are also possible for a series of disjunctions (see Problem 1.1).
Another popular optimization is that of subsumption: given two clauses
such that the set of literals in one of the clauses subsumes the set of literals
in the other clause, the longer clause can be discarded without affecting the
satisfiability of the formula.

Finally, if the original formula is in NNF, the number of clauses can be
reduced substantially, as was shown by Plaisted and Greenbaum in [152].
Tseitin’s encoding is based on constraints of the form

auxiliary variable ⇐⇒ formula , (1.32)

but only the left-to-right implication is necessary. The proof that this improve-
ment is correct is left as an exercise (Problem 1.4). In practice, experiments
show that owing to the requirement of transforming the formula to NNF first,
this reduction has a relatively small (positive) effect on the run time of modern
SAT solvers compared with Tseitin’s encoding.

Example 1.22. Consider a gate x1 ∧ x2, which we encode with a new
auxiliary variable a. Three clauses are necessary to encode the constraint
a ⇐⇒ (x1∧x2), as was demonstrated in (1.27). The constraint a ⇐= (x1∧x2)
(equivalently, (a∨¬x1 ∨¬x2)) is redundant, however, which means that only
two out of the three constraints are necessary.

A conversion algorithm with similar results to [152], in which the elimina-
tion of the negations is built in (rather than the formula being converted to
NNF a priori), has been given by Wilson [201].

1.4 The Theoretical Point of View

While we take the algorithmic point of view in this book, it is important to
understand also the theoretical context, especially for readers who are also
interested in following the literature in this field or are more used to the
terminology of formal logic. It is also necessary for understanding Chaps. 10
and 11. We must assume in this subsection that the reader is familiar to some
extent with first-order logic – a reasonable exposition of this subject is beyond
the scope of this book. See [30, 91] for a more organized study of these matters.
Let us recall some of the terms that are directly relevant to our topic.

First-order logic (also called predicate logic) is based on the following
elements:

1. Variables: a set of variables.
2. Logical symbols: the standard Boolean connectives (e.g., “∧”, “¬”, and

“∨”), quantifiers (“∃” and “∀”) and parentheses.
3. Nonlogical symbols: function, predicate, and constant symbols.
4. Syntax : rules for constructing formulas. Formulas adhering to these rules

are said to be well-formed.
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Essentially, first-order logic extends propositional logic with quantifiers
and the nonlogical symbols. The syntax of first-order logic extends the syntax
of propositional logic naturally. Two examples of such formulas are

• ∃y ∈ Z. ∀x ∈ Z. x > y ,
• ∀n ∈ N. ∃p ∈ N. n > 1 =⇒ (isprime(p) ∧ n < p < 2n) ,

where “>”, “<”, and “isprime” are nonlogical binary predicate symbols.
The elements listed above only refer to symbols and syntax – they still

do not tell us how to evaluate whether a given formula is true or false. This
separation between symbols and their interpretation – between syntax and
semantics – is an important principle in the study of logic. We shall explain
this separation with an example. Let Σ denote the set of symbols {0, 1,+,=},
where “0” and “1” are constant symbols, “+” is a binary function symbol,
and “=” is a binary predicate symbol. Consider the following formula over Σ:

ϕ := ∃x. x + 0 = 1 . (1.33)

Now, is ϕ true in N0? (N0 denotes the naturals, including 0.)
What seems like a trivial question is not so simple in the world of formal

logic. A logician would say that the answer depends, among other things,
on the interpretation of the symbols in Σ. What does the “+” symbol
mean? Which elements in the domain do “0” and “1” refer to? From a formal
perspective, whether ϕ is true can only be answered with respect to a given
structure. A structure is a tuple consisting of

• a domain;
• an interpretation of the nonlogical symbols, in the form of a mapping

between each function and predicate symbol to a function and a predicate,
respectively, and an assignment of a domain element to each of the constant
symbols;

• an assignment of a domain element to each of the free (unquantified) vari-
ables.

For example, if we choose to interpret the “+” symbol as the multiplication
function, the answer is that ϕ in (1.33) is false.

The formula ϕ is satisfiable if and only if there exists a structure under
which the formula is true. Indeed, in this case there exists such a domain and
interpretation – namely, N0 and the common interpretation of “+”, “=”, “0”
and “1” – and, hence, the formula is satisfiable.

First-order logic can be thought of as a framework giving a generic syn-
tax and the building blocks for defining specific restrictions thereof, called
theories. The restrictions defined by a theory are on the nonlogical symbols
that can be used and the interpretation that we can give them. Indeed, in a
practical setting we would not want to consider an arbitrary interpretation of
the symbols as above (where “+” is multiplication); rather we consider only
specific ones.
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A set of nonlogical symbols is called a signature. Given a signature Σ, a
Σ-formula is a formula that uses only nonlogical symbols from Σ (possibly
in addition to logical symbols). A variable is free if it is not bound by a
quantifier. A sentence is a formula without free variables. A first-order Σ-
theory T consists of a set of Σ-sentences. For a given Σ-theory T , a Σ-formula
ϕ is T -satisfiable if there exists a structure that satisfies both the formula
and the sentences of T . Similarly, a Σ-formula ϕ is T -valid if all structures
that satisfy the sentences of T , also satisfy ϕ.

The set of sentences that are required is sometimes large or even infinite.
It is therefore common to define theories via a set of axioms, which implicitly
represent all the sentences that can be inferred from them, using some sound
and complete inference system for the logical symbols.

Example 1.23. Consider a simple signature Σ consisting only of the pred-
icate symbol “=”.6 Let T be a Σ-theory. An example of a well-formed Σ-
formula is

∀x, y, z. (((x = y) ∧ ¬(y = z)) =⇒ ¬(x = z)) . (1.34)

If we wish T to restrict the interpretation of “=” to the equality predicate,
the following three axioms are sufficient:

∀x. x = x (reflexivity) ,
∀x, y. x = y =⇒ y = x (symmetry) ,
∀x, y, z. x = y ∧ y = z =⇒ x = z (transitivity) .

(1.35)

Since every domain and interpretation that satisfy these axioms also sat-
isfy (1.34), then (1.34) is T -valid.

As said above, a theory restricts only the nonlogical symbols. If we want
to restrict the set of logical symbols or the grammar, we need to speak about
fragments of the logic. For example, we can speak about the quantifier-
free fragment of T as defined in the example above. This fragment, called
equality logic, happens to be the subject of Chap. 4. Most of the chapters, in
fact, are concerned with quantifier-free fragments of theories. Another useful
fragment is called the conjunctive fragment, which means that the only
Boolean connective that is allowed is conjunction. What about restricting the
interpretation of the logical symbols? The axioms that restrict the interpre-
tation of the logical symbols, called the logical axioms, are assumed to be
“built in”, i.e., they are common to all first-order theories.

Numerous theories have been considered over the years, corresponding to
various problems of interest. Many of them lead to decidability, and, frequently
to efficient decision procedures. The theory of Presburger arithmetic, for
example, is defined with a signature Σ = {0, 1,+,=} and is still decidable. In

6 It is frequently the case in the literature that the equality sign is considered as a
logical symbol, and then the theory defined here has an empty signature. We do
not follow this convention here, however.
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contrast, the theory of Peano arithmetic, which is defined over a signature
Σ = {0, 1,+, ·,=}, is undecidable. Thus, the addition of the multiplication
symbol and the corresponding axioms that define it make the decision problem
undecidable. Other famous theories include the theory of equality, the theory
of reals, the theory of integers, the theory of arrays, the theory of recursive
data structures and the theory of sets (“set theory”). Many of the decidable
ones that are in practical use are covered in this book.

1.4.1 The Problem We Solve

Unless otherwise stated, we are concerned with

the satisfiability problem of the quantifier-free fragment of various
first-order theories.

Formulas in such fragments are called ground formulas, as they only contain
free (unquantified, also called ground) variables and constants. Exceptions are
Chap. 9, which is concerned with quantified formulas, and a small part of
Chap. 7, which is concerned with quantified array logic.

There is a subtle difference between the satisfiability problem of ground
formulas and the satisfiability problem of existentially quantified formulas.
It is, of course, trivial that a ground formula ϕ over variables x1, . . . , xn is
satisfiable if and only if

∃x1, . . . , xn. ϕ (1.36)

is satisfiable. Thus, the decision procedures for both problems can be similar.
The reason we use the former definition is that this entails, from a formal per-
spective, that the satisfying structure includes an assignment of the variables,
because they are all free. In many practical applications, such an assignment
is necessary. In fact, the former problem can be seen as an instance of the
constraint satisfaction problem (CSP), which is all about finding an
assignment that satisfies a set of unquantified constraints.7

We assume that the input formulas are given in negation normal form,
or that they are implicitly transformed to this form as a first step of any of
the algorithms described later. As explained in Sect. 1.10, every formula can
be transformed to this form in linear time. The reason that this assumption
is important is that it simplifies the algorithms and the arguments for their
correctness.

1.4.2 Our Presentation of Theories

Our presentation of theories in the chapters to come is not as defined above.
In an attempt to make the presentation more accessible and the chapters more
self-contained, we make the following changes:

7 The emphasis and terminology are somewhat different. Most of the research in
the CSP community is concerned with finite, discrete domains, in contrast to the
problems considered in this book.
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1. Rather than specifying theories through their set of symbols and sentences,
we give the domain explicitly, and fix the interpretations of symbols in
accordance with their common use. Hence, “+” is always the addition
function, “0” is the 0 element in the given domain, and so forth.

2. Rather than specifying the theory fragment we are concerned with by
referring to the generic grammar of first-order logic as a starting point,
we give an explicit, self-contained definition of the grammar.

From a formal-logic point of view, fixing the interpretation means only
that we have the sentences implicitly; the satisfiability problem remains the
same. From the algorithmic point of view, however, the satisfiability problem
now amounts to searching for a satisfying assignment of variables from the
predefined domain. Whether a given assignment satisfies the formula can be
determined according to the commonly used meanings of the various symbols.

This form of presentation is in line with our focus on the algorithmic point
of view: when designing a decision procedure for a theory, the interpretation
of the symbols has to be predefined. In other words, changing the domain or
interpretation of symbols changes the algorithm.

1.5 Expressiveness vs. Decidability

There is an important trade-off between what a theory can express and how
hard it is to decide, that is, how hard it is to determine whether a given
formula allowed by the theory is valid or not. This is the reason for defining
many different theories: otherwise, we would define and use only a single
theory sufficiently expressive for all perceivable decision problems.

A theory can be seen as a tool for defining languages. Every formula in
the theory defines a language, which is the set of “words” (the assignments,
in the case of quantifier-free formulas) that satisfy it. We now define what it
means that one theory is more expressive than another.

Definition 1.24 (expressiveness). Theory A is more expressive than theory
B if every language that can be defined by a B-formula can also be defined by
an A-formula, and there exists at least one language definable by an A-formula
that cannot be defined by a B-formula. We denote the fact that theory B is
less expressive than theory A by B ≺ A.

�

�

�

�
B ≺ A

For example, propositional logic is more expressive than what is known as “2-
CNF”, i.e., CNF in which each clause has at most two literals. In propositional
logic, we can define the formula

x1 ∨ x2 ∨ x3 , (1.37)

which defines a language that we cannot define with 2-CNF: it accepts all truth
assignments to x1, x2, x3 except {x1 �→ false, x2 �→ false, x3 �→ false}.
How can we prove this?
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Well, assume that there exists a 2-CNF representation of this formula
using the same set of variables, and consider one of its binary clauses. Such
a clause contradicts two of the eight possible assignments. For example, a
clause (x1 ∨ x2) contradicts {x1 �→ false, x2 �→ false, x3 �→ false} and
{x1 �→ false, x2 �→ false, x3 �→ true}. Any additional clause can only
contradict more assignments. Hence, we can never create a 2-CNF formula
such that exactly one of the eight assignments does not satisfy it.

On the other hand, 2-CNF is a restriction of propositional logic; hence,
obviously, any 2-CNF formula can be expressed in propositional logic. Thus,
we have

2-CNF ≺ propositional logic . (1.38)

This example also demonstrates the influence of expressiveness on compu-
tational hardness: while propositional logic is NP-complete, 2-CNF can be
solved in polynomial time.

In order to illustrate the trade-off between how expressive a theory is and
how hard it is to decide formulas in that theory, consider a theory T defined by
some syntax. Let T1, . . . , Tn denote a list of fragments of T , defined by various
restrictions on the syntax of T (similarly to the way we restricted propositional
logic to 2-CNF above), for which T1 ≺ T2 ≺ . . . ≺ Tn ≺ T . Technically, this
means that we have imposed a total order on these fragments in terms of
their expressive power. Under such assumptions, Fig. 1.3 illustrates the trade-
off between expressiveness and computational hardness: the less expressive
the theory is (the more restrictions we put on it), the easier it is to decide
it. Assume our imaginary theory T is undecidable. After some threshold is
crossed (from right to left in the figure), the theory fragments can become
decidable. After enough restrictions have been added, the theory becomes
solvable in polynomial time. The decidable but nonpolynomially decidable
fragments pose a computational challenge. This is one of the challenges we
focus on in this book.

This view is simplistic, however, because there is no total order on the
expressive power of theories, only a partial order. This means that there can
be two theories, A and B, neither of which is more expressive than the other,
yet their expressive power is different. In other words, there are languages
that can be defined by A and not by B, and there are languages that can be
defined by B and not by A.

1.6 Boolean Structure in Decision Problems

We conclude this chapter by demonstrating the need for reasoning about
formulas with a Boolean structure.

Many decision procedures assume that the decision problem is given by a
conjunction of constraints. The simplex algorithm and the Omega test, both
of which are described in Chap. 5, are examples of such procedures.
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Fig. 1.3. The trade-off between expressiveness of theories and the hardness of de-
ciding them, illustrated for an imaginary series of theories T1, . . . , Tn, T for which
each Ti, i ∈ {1, . . . , n}, is less expressive than its successor

Many applications, however, require a more complex Boolean structure.
In program analysis and verification, for example, disjunctions may appear in
the program to be verified, either explicitly (e.g., x = y || z) or implicitly
through constructs such as if and switch statements. Any reasoning system
about such programs, therefore, must be able to deal with disjunctions. For
example, verification conditions that arise in program verification (e.g.,
using Hoare logic), often have the form of an implication.

The following example focuses on a technique for reasoning about pro-
grams, that demonstrates how program structure, including if statements, is
evident in the underlying verification conditions that need to be checked.

Example 1.25. Bounded model checking (BMC) of programs is a tech-
nique for verifying that a given property (typically given as an assertion by
the user) holds for a program in which the number of loop iterations and re-
cursive calls is bounded by a given number k. The states that the program can
reach within this bound are represented symbolically by a formula, together
with the negation of the property. If the combined formula is satisfiable, then
there exists a path in the program that violates the property.

Consider the program in the left part of Fig. 1.4. The number of paths
through this program is exponential in N , as each of the a[i] elements can
be either zero or nonzero. Despite the exponential number of paths through
the program, its states can be encoded with a formula of size linear in N , as
demonstrated in the right part of the figure.

The formula on the right of Fig. 1.4 encodes the states of the program on
its left, using the static-single-assignment (SSA) form. Briefly, this means
that in each assignment of the form x = exp;, the left-hand side variable
x is replaced with a new variable, say x1, and any reference to x after this
line and before x is assigned again is replaced with x1. Such a replacement is
possible because there are no loops (recall that this is done in the context of
BMC). After this transformation, the statements are conjoined. The resulting
equation represents the states of the original program.
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int a[N]; unsigned c;
...

c = 0;
for(i = 0; i < N; i++)
if(a[i] == 0)

c++;

c1 = 0 ∧

c2 = (a[0] = 0) ? c1 + 1 : c1 ∧

c3 = (a[1] = 0) ? c2 + 1 : c2 ∧

. . .

cN+1 = (a[N−1] = 0) ? cN + 1 : cN

Fig. 1.4. A simple program with an exponential number of paths (left), and a
static-single-assignment (SSA) form of this program after unwinding its for loop
(right)

The ternary operator c ? x : y in the equation on the right of Fig. 1.4 can
be rewritten using a disjunction, as illustrated in (1.39). These disjunctions
lead to an exponential number of clauses once the formula is converted to
DNF.

c1 = 0 ∧
((a[0] = 0 ∧ c2 = c1 + 1) ∨ (a[0] �= 0 ∧ c2 = c1)) ∧
((a[1] = 0 ∧ c3 = c2 + 1) ∨ (a[1] �= 0 ∧ c3 = c2)) ∧
. . .
((a[N−1] = 0 ∧ cN+1 = cN + 1) ∨ (a[N−1] �= 0 ∧ cN+1 = cN )) .

(1.39)

In order to verify that some assertion holds at a specific location in the pro-
gram, it is sufficient to add a constraint corresponding to the negation of this
assertion, and check whether the resulting formula is satisfiable. For example,
to prove that at the end of the program c ≤ N , we need to conjoin (1.39) with
(cN+1 > N).

To summarize this section, there is a need to reason about formulas with
disjunctions, as illustrated in the example above. The simple solution of going
through DNF does not scale, and better solutions are needed. Solutions that
perform better in practice (the worst case remains exponential, of course)
indeed exist, and are covered extensively in this book.

1.7 Problems

Problem 1.1 (improving Tseitin’s encoding).

(a) Using Tseitin’s encoding, transform the following formula ϕ to CNF. How
many clauses are needed?

ϕ := ¬(x1 ∧ (x2 ∨ . . . ∨ xn)) . (1.40)
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(b) Consider a clause (x1∨ . . .∨xn), n > 2, in a non-CNF formula. How many
auxiliary variables are necessary for encoding it with Tseitin’s encoding?
Suggest an alternative way to encode it, using a single auxiliary variable.
How many clauses are needed?

Problem 1.2 (expressiveness and complexity).

(a) Let T1 and T2 be two theories whose satisfiability problem is decidable and
in the same complexity class. Is the satisfiability problem of a T1-formula
reducible to a satisfiability problem of a T2-formula?

(b) Let T1 and T2 be two theories whose satisfiability problems are reducible
to one another. Are T1 and T2 in the same complexity class?

Problem 1.3 (monotonicity of NNF with respect to satisfiability).
Prove Theorem 1.14.

Problem 1.4 (one-sided Tseitin encoding). Let ϕ be an NNF formula (see
Definition 1.10). Let −→ϕ be a formula derived from ϕ as in Tseitin’s encoding
(see Sect. 1.3), but where the CNF constraints are derived from implications
from left to right rather than equivalences. For example, given a formula

a1 ∧ (a2 ∨ ¬a3) ,

the new encoding is the CNF equivalent of the following formula,

x0 ∧
(x0 =⇒ a1 ∧ x1) ∧
(x1 =⇒ a2 ∨ x2) ∧
(x2 =⇒ ¬a3) ,

where x0, x1, x2 are new auxiliary variables. Note that Tseitin’s encoding to
CNF starts with the same formula, except that the “=⇒” symbol is replaced
with “⇐⇒”.

1. Prove that −→ϕ is satisfiable if and only if ϕ is.
2. Let l,m, n be the number of AND, OR, and NOT gates, respectively, in ϕ.

Derive a formula parameterized by l, m and n that expresses the ratio of
the number of CNF clauses in Tseitin’s encoding to that in the one-sided
encoding suggested here.
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1.8 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

α |= ϕ An assignment α satisfies a formula ϕ 6

|= ϕ A formula ϕ is valid (in the case of quantifier-free
formulas, this means that it is satisfied by all assign-
ments from the domain)

6

T A theory 6

pos(α,ϕ) Set of literals of ϕ satisfied by an assignment α 9

B ≺ A Theory B is less expressive than theory A 18
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Decision Procedures for Propositional Logic

2.1 Propositional Logic

We assume that the reader is familiar with propositional logic. The syntax of
formulas in propositional logic is defined by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : Boolean-identifier | true | false

Other Boolean operators such as OR (∨) can be constructed using AND (∧)
and NOT (¬).

2.1.1 Motivation

Propositional logic is widely used in diverse areas such as database queries,
planning problems in artificial intelligence, automated reasoning and circuit
design. Here we consider two examples: a layout problem and a program ver-
ification problem.

Example 2.1. Let S = {s1, . . . , sn} be a set of radio stations, each of which
has to be allocated one of k transmission frequencies, for some k < n. Two
stations that are too close to each other cannot have the same frequency. The
set of pairs having this constraint is denoted by E. To model this problem,
define a set of propositional variables {xij | i ∈ {1, . . . , n}, j ∈ {1, . . . , k}}.
Intuitively, variable xij is set to true if and only if station i is assigned the
frequency j. The constraints are:

• Every station is assigned at least one frequency:

n∧

i=1

k∨

j=1

xij . (2.1)
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• Every station is assigned not more than one frequency:

n∧

i=1

k−1∧

j=1

(xij =⇒
∧

j<t≤k

¬xit) . (2.2)

• Close stations are not assigned the same frequency. For each (i, j) ∈ E,

k∧

t=1

(xit =⇒ ¬xjt) . (2.3)

Note that the input of this problem can be represented by a graph, where
the stations are the graph’s nodes and E corresponds to the graph’s edges.
Checking whether the allocation problem is solvable corresponds to solving
what is known in graph theory as the k-colorability problem: can all nodes be
assigned one of k colors such that two adjacent nodes are assigned different
colors? Indeed, one way to solve k-colorability is by reducing it to propositional
logic.

Example 2.2. Consider the two code fragments in Fig. 2.1. The fragment
on the right-hand side might have been generated from the fragment on the
left-hand side by an optimizing compiler.

if(!a && !b) h();
else

if(!a) g();
else f();

if(a) f();
else

if(b) g();
else h();

Fig. 2.1. Two code fragments – are they equivalent?

We would like to check if the two programs are equivalent. The first step
in building the verification condition is to model the variables a and b and
the procedures that are called using the Boolean variables a, b, f , g, and h,
as can be seen in Fig. 2.2.

if ¬a ∧ ¬b then h
else

if ¬a then g
else f

if a then f
else

if b then g
else h

Fig. 2.2. In the process of building a formula – the verification condition – we
replace the program variables and the function symbols with new Boolean variables

The if-then-else construct can be replaced by an equivalent proposi-
tional logic expression as follows:
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(if x then y else z) ≡ (x ∧ y) ∨ (¬x ∧ z) . (2.4)

Consequently, the problem of checking the equivalence of the two code frag-
ments is reduced to checking the validity of the following propositional for-
mula:

(¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
⇐⇒ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h) .

(2.5)

2.2 SAT Solvers

2.2.1 The Progress of SAT Solving

Given a Boolean formula B, a SAT solver decides whether B is satisfiable;
if it is, it also reports a satisfying assignment. In this chapter, we consider
only the problem of solving formulas in conjunctive normal form (CNF) (see
Definition 1.20). Since every formula can be converted to this form in linear
time (as explained right after Definition 1.20), this does not impose a real
restriction.1 Solving general propositional formulas can be somewhat more
efficient in some problem domains, but most of the solvers and most of the
research are still focused on CNF formulas.

The practical and theoretical importance of the satisfiability problem has
led to a vast amount of research in this area, which has resulted in excep-
tionally powerful SAT solvers. Modern SAT solvers can solve many real-life
CNF formulas with hundreds of thousands or even millions of variables in a
reasonable amount of time. Figure 2.3 shows a sketch of the progress of these
tools through the years. Of course, there are also instances of problems two
orders of magnitude smaller that these tools still cannot solve. In general, it
is very hard to predict which instance is going to be hard to solve, without
actually attempting to solve it.

For many years, SAT solvers were better at solving satisfiable instances
than unsatisfiable ones. This is not true anymore. The success of SAT solvers
can be largely attributed to their ability to learn from wrong assignments,
to prune large search spaces quickly, and to focus first on the “important”
variables, those variables that, once given the right value, simplify the prob-
lem immensely.2 All of these factors contribute to the fast solving of both
satisfiable and unsatisfiable instances.

1 Appendix B provides a library for performing this conversion and generating
CNF in the DIMACS format, which is used by virtually all publicly available
SAT solvers.

2 Specifically, every formula has what is known as back-door variables [200],
which are variables that, once given the right value, simplify the formula to the
point that it is polynomial to solve.
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Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

The majority of modern SAT solvers can be classified into two main cate-
gories. The first category is based on the Davis–Putnam–Loveland–Logemann
(DPLL) framework: in this framework the tool can be thought of as traversing
and backtracking on a binary tree, in which internal nodes represent partial
assignments, and the leaves represent full assignments, i.e., an assignment to
all the variables.

The second category is based on a stochastic search: the solver guesses
a full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy) heuris-
tic. Typically it counts the number of unsatisfied clauses and chooses the flip
that minimizes this number. There are various strategies that help such solvers
avoid local minima and avoid repeating previous bad moves. DPLL solvers,
however, are considered better in most cases, at least at the time of writ-
ing this chapter (2007), according to annual competitions that measure their
performance with numerous CNF instances. DPLL solvers also have the ad-
vantage that, unlike most stochastic search methods, they are complete (see
Definition 1.6). Stochastic methods seem to have an average advantage in
solving randomly generated (satisfiable) CNF instances, which is not surpris-
ing: in these instances there is no structure to exploit and learn from, and no
obvious choices of variables and values, which makes the heuristics adopted
by DPLL solvers ineffective. We shall focus on DPLL solvers only.

2.2.2 The DPLL Framework

In its simplest form, a DPLL solver progresses by making a decision about a
variable and its value, propagates implications of this decision that are easy
to detect, and backtracks in the case of a conflict. Viewing the process as a
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search on a binary tree, each decision is associated with a decision level,
which is the depth in the binary decision tree in which it is made, starting
from 1. The assignments implied by a decision are associated with its decision
level. Assignments implied regardless of the current assignments (owing to
unary clauses, which are clauses with a single literal) are associated with
decision level 0, also called the ground level.

Definition 2.3 (state of a clause under an assignment). A clause is
satisfied if one or more of its literals are satisfied (see Definition 1.12), con-
flicting if all of its literals are assigned but not satisfied, unit if it is not
satisfied and all but one of its literals are assigned, and unresolved other-
wise.

Note that the definition of a unit clause and an unresolved clause are only
relevant for partial assignments (see Definition 1.1).

Example 2.4. Given the partial assignment

{x1 �→ 1, x2 �→ 0, x4 �→ 1} , (2.6)

(x1 ∨ x3 ∨ ¬x4) is satisfied,
(¬x1 ∨ x2) is conflicting,
(¬x1 ∨ ¬x4 ∨ x3) is unit,
(¬x1 ∨ x3 ∨ x5) is unresolved.

Given a partial assignment under which a clause becomes unit, it must
be extended so that it satisfies the unassigned literal of this clause. This
observation is known as the unit clause rule. Following this requirement is
necessary but obviously not sufficient for satisfying the formula.

For a given unit clause C with an unassigned literal l, we say that l
is implied by C and that C is the antecedent clause of l, denoted by
Antecedent(l). If more than one unit clause implies l, we refer to the clause
that the SAT solver used in order to imply l as its antecedent.

Example 2.5. The clause C := (¬x1 ∨ ¬x4 ∨ x3) and the partial assignment
{x1 �→ 1, x4 �→ 1}, imply the assignment x3 and Antecedent(x3) = C.

A framework followed by most modern DPLL solvers has been presented
by, for example, Zhang and Malik [211], and is shown in Algorithm 2.2.1. The
table in Fig. 2.5 includes a description of the main components used in this
algorithm, and Fig. 2.4 depicts the interaction between them. A description
of the Analyze-Conflict function is delayed to Sect. 2.2.6.
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Algorithm 2.2.1: DPLL-SAT

Input: A propositional CNF formula B
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfiable”

otherwise

1. function DPLL
2. if BCP() = “conflict” then return “Unsatisfiable”;
3. while (true) do

4. if ¬Decide() then return “Satisfiable”;
5. else

6. while (BCP() = “conflict”) do

7. backtrack-level := Analyze-Conflict();
8. if backtrack-level < 0 then return “Unsatisfiable”;
9. else BackTrack(backtrack-level);

full

conflict

SAT

UNSAT

dl ≥ 0

BackTrack

Analyze-
Conflict

BCP
conflict
no

partial
assignment

Decide

assignment

Fig. 2.4. DPLL-SAT: high-level overview of the Davis-Putnam-Loveland-Logemann
algorithm. The variable dl is the decision level to which the procedure backtracks

2.2.3 BCP and the Implication Graph

We now demonstrate Boolean constraints propagation (BCP), reaching a con-
flict, and backtracking. Each assignment is associated with the decision level
at which it occurred. If a variable xi is assigned 1 (true) (owing to either
a decision or an implication) at decision level dl, we write xi@dl. Similarly,

�

�

�

�
xi@dl

¬xi@dl reflects an assignment of 0 (false) to this variable at decision level
dl. Where appropriate, we refer only to the truth assignment, omitting the
decision level, in order to make the notation simpler.
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Name Decide()

Output false if and only if there are no more variables to assign.

Description Chooses an unassigned variable and a truth value for it.

Comments There are numerous heuristics for making these decisions, some
of which are described later in Sect. 2.2.5. Each such decision is
associated with a decision level, which can be thought of as the
depth in the search tree.

Name BCP()

Output “conflict” if and only if a conflict is encountered.

Description Repeated application of the unit clause rule until either a conflict
is encountered or there are no more implications.

Comments This repeated process is called Boolean constraint propagation
(BCP). BCP is applied in line 2 because unary clauses at this
stage are unit clauses.

Name Analyze-Conflict()

Output Minus 1 if a conflict at decision level 0 is detected (which implies
that the formula is unsatisfiable). Otherwise, a decision level
which the solver should backtrack to.

Description A detailed description of this function is delayed to Sect. 2.2.4.
Briefly, it is responsible for computing the backtracking level,
detecting global unsatisfiability, and adding new constraints on
the search in the form of new clauses.

Name BackTrack(dl)

Description Sets the current decision level to dl and erases assignments at
decision levels larger than dl.

Fig. 2.5. A description of the main components of Algorithm 2.2.1

The process of BCP is best illustrated with an implication graph. An
implication graph represents the current partial assignment and the reason
for each of the implications.

Definition 2.6 (implication graph). An implication graph is a labeled di-
rected acyclic graph G(V,E), where:

• V represents the literals of the current partial assignment (we refer to a
node and the literal that it represents interchangeably). Each node is labeled
with the literal that it represents and the decision level at which it entered
the partial assignment.

• E with E = {(vi, vj) | vi, vj ∈ V,¬vi ∈ Antecedent(vj)} denotes the set of
directed edges where each edge (vi, vj) is labeled with Antecedent(vj).
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• G can also contain a single conflict node labeled with κ and incoming
edges {(v, κ) | ¬v ∈ c} labeled with c for some conflicting clause c.

The root nodes of an implication graph correspond to decisions, and the inter-
nal nodes to implications through BCP. A conflict node with incoming edges
labeled with c represents the fact that the BCP process has reached a con-
flict, by assigning 0 to all the literals in the clause c (i.e., c is conflicting).
In such a case, we say that the graph is a conflict graph. The implication
graph corresponds to all the decision levels lower than or equal to the current
one, and is dynamic: backtracking removes nodes and their incoming edges,
whereas new decisions, implications, and conflict clauses increase the size of
the graph.

The implication graph is sensitive to the order in which the implications
are propagated in BCP, which means that the graph is not unique for a given
partial assignment. In most SAT solvers, this order is rather arbitrary (in
particular, BCP progresses along a list of clauses that contain a given literal,
and the order of clauses in this list can be sensitive to the order of clauses in
the input CNF formula). In some other SAT solvers – see for example [151]
– this order is not arbitrary; rather, it is biased towards reaching a conflict
faster.

A partial implication graph is a subgraph of an implication graph,
which illustrates the BCP at a specific decision level. Partial implication
graphs are sufficient for describing Analyze-Conflict. The roots in such
a partial graph represent assignments (not necessarily decisions) at decision
levels lower than dl, in addition to the decision at level dl, and internal nodes
correspond to implications at level dl. The description that follows uses mainly
this restricted version of the graph.

Consider, for example, a formula that contains the following set of clauses,
among others:

c1 = (¬x1 ∨ x2) ,
c2 = (¬x1 ∨ x3 ∨ x5) ,
c3 = (¬x2 ∨ x4) ,
c4 = (¬x3 ∨ ¬x4) ,
c5 = (x1 ∨ x5 ∨ ¬x2) ,
c6 = (x2 ∨ x3) ,
c7 = (x2 ∨ ¬x3) ,
c8 = (x6 ∨ ¬x5) .

(2.7)

Assume that at decision level 3 the decision was ¬x6@3, which implied ¬x5@3
owing to clause c8 (hence, Antecedent(¬x5) = c8). Assume further that the
solver is now at decision level 6 and assigns x1 = 1. At decision levels 4 and 5,
variables other than x1, . . . , x6 were assigned, and are not listed here as they
are not relevant to these clauses.

The implication graph on the left of Fig. 2.6 demonstrates the BCP process
at the current decision level 6 until, in this case, a conflict is detected. The
roots of this graph, namely ¬x5@3 and x1@6, constitute a sufficient condition
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Fig. 2.6. A partial implication graph for decision level 6, corresponding to the
clauses in (2.7), after a decision x1 = 1 (left) and a similar graph after learning the
conflict clause c9 = (x5 ∨ ¬x1) and backtracking to decision level 3 (right)

for creating this conflict. Therefore, we can safely add to our formula the
conflict clause

c9 = (x5 ∨ ¬x1) . (2.8)

While c9 is logically implied by the original formula and therefore does not
change the result, it prunes the search space. The process of adding conflict
clauses is generally referred to as learning, reflecting the fact that this is the
solver’s way to learn from its past mistakes. As we progress in this chapter,
it will become clear that conflict clauses not only prune the search space, but
also have an impact on the decision heuristic, the backtracking level, and the
set of variables implied by each decision.

Analyze-Conflict is the function responsible for deriving new conflict
clauses and computing the backtracking level. It traverses the implication
graph backwards, starting from the conflict node κ, and generates a conflict
clause through a series of steps that we describe later in Sect. 2.2.4. For now,
assume that c9 is indeed the clause generated.

After detecting the conflict and adding c9, the solver determines which
decision level to backtrack to according to the conflict-driven backtracking
strategy. According to this strategy, the backtracking level is set to the second
most recent decision level in the conflict clause3 (or, equivalently, it is set to
the highest of the decision levels in the clause other than the current decision
level), while erasing all decisions and implications made after that level.

In the case of c9, the solver backtracks to decision level 3 (the decision level
of x5), and erases all assignments from decision level 4 onwards, including the
assignments to x1, x2, x3, and x4.

The newly added conflict clause c9 becomes a unit clause since x5 = 0, and
therefore the assignment ¬x1@3 is implied. This new implication re-starts the
BCP process at level 3. Clause c9 is a special kind of a conflict clause, called
an asserting clause: it forces an immediate implication after backtracking.
Analyze-Conflict can be designed to generate asserting clauses only, as
indeed most competitive solvers do.

3 In the case of learning a unary clause, the solver backtracks to the ground level.
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Aside: Multiple Conflict Clauses
More than one conflict clause can be derived from a conflict graph. In the
present example, the assignment {x2 �→ 1, x3 �→ 1} is also a sufficient con-
dition for the conflict, and hence (¬x2 ∨ ¬x3) is also a conflict clause. A
generalization of this observation requires the following definition.

Definition 2.7 (separating cut). A separating cut in a conflict graph is a
minimal set of edges whose removal breaks all paths from the root nodes to the
conflict node.

This definition is applicable to a full implication graph (see Definition 2.6), as
well as to a partial graph focused on the decision level of the conflict. The cut
bipartitions the nodes into the reason side (the side that includes all the roots)
and the conflict side. The set of nodes on the reason side that have at least
one edge to a node on the conflict side constitute a sufficient condition for the
conflict, and hence their negation is a legitimate conflict clause. Different SAT
solvers have different strategies for choosing the conflict clauses that they add:
some add as many as possible (corresponding to many different cuts), while
others try to find the most effective ones. Some, including most of the modern
SAT solvers, add a single clause, which is an asserting clause (see below), for
each conflict.

After asserting x1 = 0 the solver again reaches a conflict, as can be seen
in the right drawing in Fig. 2.6. This time the conflict clause (x2) is added,
the solver backtracks to decision level 0, and continues from there. Why (x2)?
The strategy of Analyze-Conflict in generating these clauses is explained
later in Sect. 2.2.4, but observe for the moment how indeed ¬x2 leads to a
conflict through clauses c6 and c7, as can also be inferred from Fig. 2.6 (right).

Conflict-driven backtracking raises several issues:

• It seems to waste work, because the partial assignments up to decision
level 5 can still be part of a satisfying assignment. However, empirical
evidence shows that conflict-driven backtracking, coupled with a conflict-
driven decision heuristic such as VSIDS (discussed later in Sect. 2.2.5),
performs very well. A possible explanation for the success of this heuristic is
that the conflict encountered can influence the decision heuristic to decide
values or variables different from those at deeper decision levels (levels 4
and 5 in this case). Thus, keeping the decisions and implications made
before the new information (i.e., the new conflict clause) has arrived may
skew the search to areas not considered best anymore by the heuristic.
There has been some success in overcoming this problem by repeating
previous assignments – see [150].

• Is this process guaranteed to terminate? In other words, how do we know
that a partial assignment cannot be repeated forever? The learned conflict
clauses cannot be the reason, because in fact most SAT solvers erase many
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of them after a while to prevent the formula from growing too much. The
reason is the following.

Theorem 2.8. It is never the case that the solver enters decision level dl
again with the same partial assignment.

Proof. Consider a partial assignment up to decision level dl− 1 that does
not end with a conflict, and assume falsely that this state is repeated later,
after the solver backtracks to some lower decision level dl− (0 ≤ dl− < dl).
Any backtracking from a decision level dl+ (dl+ ≥ dl) to decision level
dl− adds an implication at level dl− of a variable that was assigned at
decision level dl+. Since this variable has not so far been part of the partial
assignment up to decision level dl, once the solver reaches dl again, it is
with a different partial assignment, which contradicts our assumption.

The (hypothetical) progress of a SAT solver based on this strategy is illus-
trated in Fig. 2.7. More details of this graph are explained in the caption.

Conflict
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x = 1

Refutation of x = 1

c1

c3
BCP

c5

c4

c2

Time Decision

Fig. 2.7. Illustration of the progress of a SAT solver based on conflict-driven back-
tracking. Every conflict results in a conflict clause (denoted by c1, . . . , c5 in the
drawing). If the top left decision is x = 1, then this drawing illustrates the work
done by the SAT solver to refute this wrong decision. Only some of the work during
this time was necessary for creating c5, refuting this decision, and computing the
backtracking level. The “wasted work” (which might, after all, become useful later
on) is due to the imperfection of the decision heuristic

2.2.4 Conflict Clauses and Resolution

Now consider Analyze-Conflict (Algorithm 2.2.2). The description of the
algorithm so far has relied on the fact that the conflict clause generated is
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an asserting clause, and we therefore continue with this assumption when
considering the termination criterion for line 3. The following definitions are
necessary for describing this criterion.

�

�

�

�

Algorithm 2.2.2: Analyze-Conflict

Input:

Output: Backtracking decision level + a new conflict clause

1. if current-decision-level = 0 then return -1;
2. cl := current-conflicting-clause;
3. while (¬Stop-criterion-met(cl)) do

4. lit := Last-assigned-literal(cl);
5. var := Variable-of-literal(lit);
6. ante := Antecedent(lit);
7. cl := Resolve(cl, ante, var);
8. add-clause-to-database(cl);
9. return clause-asserting-level(cl); ⊲ 2nd highest decision level in cl

Definition 2.9 (unique implication point (UIP)). Given a partial con-
flict graph corresponding to the decision level of the conflict, a unique impli-
cation point (UIP) is any node other than the conflict node that is on all paths
from the decision node to the conflict node.

The decision node itself is a UIP by definition, while other UIPs, if they exist,
are internal nodes corresponding to implications at the decision level of the
conflict.

Definition 2.10 (first UIP). A first UIP is a UIP that is closest to the
conflict node.

We leave the proof that the notion of a first UIP in a conflict graph is well
defined as an exercise (see Problem 2.11). Figure 2.8 demonstrates UIPs in a
conflict graph (see also the caption).

Empirical studies show that a good strategy for the Stop-criterion-
met(cl) function (line 3) is to return true if and only if cl contains the
negation of the first UIP as its single literal at the current decision level.
This negated literal becomes asserted immediately after backtracking. There
are several advantages to this strategy, which may explain the results of the
empirical studies:

1. The strategy has a low computational cost, compared to strategies that
choose UIPs further away from the conflict.
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x2@2

x4@7

UIPUIP

κ

x1@4

Fig. 2.8. An implication graph (stripped of most of its labels) with two UIPs. The
left UIP is the decision node, and the right one is the first UIP, as it is the one
closest to the conflict node

2. It backtracks to the lowest decision level.

The second fact can be demonstrated with the help of Fig. 2.8. Let l1
and l2 denote the literals at the first and the second UIP, respectively. The
asserting clauses generated with the first UIP and second-UIP strategies are,
respectively, (¬l1∨¬x1∨¬x2) and (¬l2∨¬x1∨¬x2∨¬x4). It is not a coincidence
that the second clause subsumes the first, other than the asserting literals ¬l1
and ¬l2: it is always like this, by construction. Now recall how the backtracking
level is determined: it is equal to the decision level corresponding to the second
highest in the asserting clause. Clearly, this implies that the backtracking level
computed with regard to the first clause is lower than that computed with
regard to the second clause. In our example, these are decision levels 4 and 7,
respectively.

In order to explain lines 4–7 of Analyze-Conflict, we need the following
definition.

Definition 2.11 (binary resolution and related terms). Consider the
following inference rule:

(a1 ∨ . . . ∨ an ∨ β) (b1 ∨ . . . ∨ bm ∨ ¬β)

(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)
(Binary Resolution) , (2.9)

where a1, . . . , an, b1, . . . , bm are literals and β is a variable. The variable β is
called the resolution variable. The clauses (a1 ∨ . . .∨an ∨β) and (b1 ∨ . . .∨
bm ∨ (¬β)) are the resolving clauses, and (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm) is
the resolvent clause.

A well-known result obtained by Robinson [166] shows that a deductive system
based on the binary-resolution rule as its single inference rule is sound and
complete. In other words, a CNF formula is unsatisfiable if and only if there
exists a finite series of binary-resolution steps ending with the empty clause.
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Aside: Hard Problems for Resolution-Based Procedures
Some propositional formulas can be decided with no less than an exponential
number of resolution steps in the size of the input. Haken [90] proved in 1985
that the pigeonhole problem is one such problem: given n > 1 pigeons and
n − 1 pigeonholes, can each of the pigeons be assigned a pigeonhole without
sharing? While a formulation of this problem in propositional logic is rather
trivial with n · (n − 1) variables, currently no SAT solver (which, recall, im-
plicitly perform resolution) can solve this problem in a reasonable amount of
time for n larger than several tens, although the size of the CNF itself is rela-
tively small. As an experiment, we tried to solve this problem for n = 20 with
three leading SAT solvers: Siege4 [171], zChaff-04 [133] and HaifaSat [82]. On
a Pentium 4 with 1 GB of main memory, none of the three could solve this
problem within three hours. Compare this result with the fact that, bounded
by the same timeout, these tools routinely solve problems arising in industry
with hundreds of thousands of variables.

The function Resolve(c1, c2, v) used in line 7 of Analyze-Conflict re-
turns the resolvent of the clauses c1, c2, where the resolution variable is v. The
Antecedent function used in line 6 of this function returns Antecedent(lit).
The other functions and variables are self-explanatory.

Analyze-Conflict progresses from right to left on the conflict graph,
starting from the conflicting clause, while constructing the new conflict clause
through a series of resolution steps. It begins with the conflicting clause cl,
in which all literals are set to 0. The literal lit is the literal in cl assigned
last, and var denotes its associated variable. The antecedent clause of var,
denoted by ante, contains ¬lit as the only satisfied literal, and other literals,
all of which are currently unsatisfied. The clauses cl and ante thus contain
lit and ¬lit, respectively, and can therefore be resolved with the resolution
variable var. The resolvent clause is again a conflicting clause, which is the
basis for the next resolution step.

Example 2.12. Consider the partial implication graph and set of clauses in
Fig. 2.9, and assume that the implication order in the BCP was x4, x5, x6, x7.

The conflict clause c5 := (x10 ∨ x2 ∨ ¬x4) is computed through a series
of binary resolutions. Analyze-Conflict traverses backwards through the
implication graph starting from the conflicting clause c4, while following the
order of the implications in reverse, as can be seen in the table below. The
intermediate clauses, in this case the second and third clauses in the resolution
sequence, are typically discarded.
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c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

... c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Fig. 2.9. A partial implication graph and a set of clauses that demonstrate Algo-
rithm 2.2.2. The first UIP is x4, and, correspondingly, the asserted literal is ¬x4

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3

(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1

c5 (¬x4 ∨ x2 ∨ x10)

The clause c5 is an asserting clause in which the negation of the first UIP (x4)
is the only literal from the current decision level.

2.2.5 Decision Heuristics

Probably the most important element in SAT solving is the strategy by which
the variables and the value given to them are chosen. This strategy is called the
decision heuristic of the SAT solver. Let us survey some of the best-known
decision heuristics, in the order in which they were suggested, which is also
the order of their average efficiency as measured by numerous experiments.
New strategies are published every year.

Jeroslow–Wang

Given a CNF formula B, compute for each literal l

J(l) = Σω∈B,l∈ω2−|ω| , (2.10)

where ω represents a clause and |ω| its length. Choose the literal l for which
J(l) is maximal, and for which neither l or ¬l is asserted.

This strategy gives higher priority to literals that appear frequently
in short clauses. It can be implemented statically (one computation in the
beginning of the run) or dynamically, where in each decision only unsatisfied
clauses are considered in the computation. In the context of a SAT solver
that learns through addition of conflict clauses, the dynamic approach is more
reasonable.
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Dynamic Largest Individual Sum (DLIS)

At each decision level, choose the unassigned literal that satisfies the largest
number of currently unsatisfied clauses.

The common way to implement such a heuristic is to keep a pointer
from each literal to a list of clauses in which it appears. At each decision
level, the solver counts the number of clauses that include this literal and
are not yet satisfied, and assigns this number to the literal. Subsequently, the
literal with the largest count is chosen. DLIS imposes a large overhead, since
the complexity of making a decision is proportional to the number of clauses.
Another variation of this strategy, suggested by Copty et al. [52], is to count
the number of satisfied clauses resulting from each possible decision and its
implications through BCP. This variation indeed makes better decisions, but
also imposes more overhead.

Variable State Independent Decaying Sum (VSIDS)

This is a strategy similar to DLIS, with two differences. First, when counting
the number of clauses in which every literal appears, we disregard the question
of whether that clause is already satisfied or not. This means that the esti-
mation of the quality of every decision is compromised, but the complexity of
making a decision is better: it takes a constant time to make a decision assum-
ing we keep the literals in a list sorted by their score. Second, we periodically
divide all scores by 2.

The idea is to make the decision heuristic conflict-driven, which means
that it tries to solve conflicts before attempting to satisfy more original clauses.
For this purpose, it needs to give higher scores to variables that are involved
in recent conflicts. Recall that every conflict results in a conflict clause. A
new conflict clause, like any other clause, adds 1 to the score of each literal
that appears in it. The greater the amount of time that has passed since
this clause was added, the more often the score of these literals is divided by
2. Thus, variables in new conflict clauses become more influential. The SAT
solver Chaff, which introduced VSIDS, allows one to tune this strategy by
controlling the frequency with which the scores are divided and the constant
by which they are divided. It turns out that different families of CNF formulas
are best solved with different parameters.

Berkmin

Maintain a score per variable, similar to the score VSIDS maintains for each
literal (i.e., increase the counter of a variable if one of its literals appears
in a clause, and periodically divide the counters by a constant). Maintain a
similar score for each literal, but do not divide it periodically. Push conflict
clauses into a stack. When a decision has to be made, search for the topmost
clause on this stack that is unresolved. From this clause, choose the unassigned
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variable with the highest variable score. Determine the value of this variable
by choosing the literal corresponding to this variable with the highest literal
score. If the stack is empty, the same strategy is applied, except that the
variable is chosen from the set of all unassigned variables rather than from a
single clause.

This heuristic was first implemented in a SAT solver called Berkmin. The
idea is to give variables that appear in recent conflicts absolute priority, which
seems empirically to be more effective. It also concentrates only on unresolved
conflicts, in contrast to VSIDS.

2.2.6 The Resolution Graph and the Unsatisfiable Core

Since each conflict clause is derived from a set of other clauses, we can keep
track of this process with a resolution graph.

Definition 2.13 (binary resolution graph). A binary resolution graph is
a directed acyclic graph where each node is labeled with a clause, each root
corresponds to an original clause, and each nonroot node has exactly two in-
coming edges and corresponds to a clause derived by binary resolution from
its parents in the graph.

Typically, SAT solvers do not retain all the intermediate clauses that are
created during the resolution process of the conflict clause. They store enough
clauses, however, for building a graph that describes the relation between the
conflict clauses.

Definition 2.14 (resolution graph). A resolution graph is a directed acyclic
graph where each node is labeled with a clause, each root corresponds to an
original clause, and each nonroot node has two or more incoming edges and
corresponds to a clause derived by resolution from its parents in the graph,
possibly through other clauses that are not represented in the graph.

Resolution graphs are also called hyperresolution graphs, to emphasize
that they are not necessarily binary.

Example 2.15. Consider once again the implication graph in Fig. 2.9. The
clauses c1, . . . , c4 participate in the resolution of c5. The corresponding reso-
lution graph appears in Fig. 2.10.

In the case of an unsatisfiable formula, the resolution graph has a sink
node (i.e., a node with incoming edges only), which corresponds to an empty
clause.4

4 In practice, SAT solvers terminate before they actually derive the empty clause, as
can be seen in Algorithms 2.2.1 and 2.2.2, but it is possible to continue developing
the resolution graph after the run is over and derive a full resolution proof ending
with the empty clause.
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c5

c3

c2

c1

c4

Fig. 2.10. A resolution graph corresponding to the implication graph in Fig. 2.9

The resolution graph can be used for various purposes, some of which we
mention here. The most common use of this graph is for deriving an unsatis-
fiable core of unsatisfiable formulas.

Definition 2.16 (unsatisfiable core). An unsatisfiable core of a CNF un-
satisfiable formula is any unsatisfiable subset of the original set of clauses.

Unsatisfiable cores which are relatively small subsets of the original set of
clauses are useful in various contexts, because they help us to focus on a cause
of unsatisfiability (there can be multiple unsatisfiable cores not contained in
each other, and not even intersecting each other). We leave it to the reader
in Problem 2.13 to find an algorithm that computes a core given a resolution
graph.

Another common use of a resolution graph is for certifying a SAT solver’s
conclusion that a formula is unsatisfiable. Unlike the case of satisfiable in-
stances, for which the satisfying assignment is an easy-to-check piece of evi-
dence, checking an unsatisfiability result is harder. Using the resolution graph,
however, an independent checker can replay the resolution steps starting from
the original clauses until it derives the empty clause. This verification requires
time that is linear in the size of the resolution proof.

2.2.7 SAT Solvers: Summary

In this section we have covered the basic elements of modern DPLL solvers,
including decision heuristics, learning with conflict clauses, and conflict-driven
backtracking. There are various other mechanisms for gaining efficiency that
we do not cover in this book, such as efficient implementation of BCP, de-
tection of subsumed clauses, preprocessing and simplification of the formula,
deletion of conflict clauses, and restarts (i.e., restarting the solver when it
seems to be in a hopeless branch of the search tree). The interested reader is
referred to the references given in Sect. 2.5.

Let us now reflect on the two approaches to formal reasoning that we
described in Sect. 1.1 – deduction and enumeration. Can we say that SAT
solvers, as described in this section, follow either one of them? On the one
hand, SAT solvers can be thought of as searching a binary tree with 2n leaves,
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where n is the number of Boolean variables in the input formula. Every leaf
is a full assignment, and, hence, traversing all leaves corresponds to enumera-
tion. From this point of view, conflict clauses are generated in order to prune
the search space. On the other hand, conflict clauses are deduced via the reso-
lution rule from other clauses. If the formula is unsatisfiable then the sequence
of applications of this rule, as listed in the SAT solver’s log, is a legitimate
deductive proof of unsatisfiability. The search heuristic can therefore be un-
derstood as a strategy of applying an inference rule. Thus, the two points of
view are equally legitimate.

2.3 Binary Decision Diagrams

2.3.1 From Binary Decision Trees to ROBDDs

Reduced ordered binary decision diagrams (ROBDDs, or BDDs for short),
are a highly useful graph-based data structure for manipulating Boolean for-
mulas. Unlike CNF, this data representation is canonical, which means that
if two formulas are equivalent, then their BDD representations are equivalent
as well (to achieve this property the two BDDs should be constructed fol-
lowing the same variable order, as we will soon explain). Canonicity is not a
property of CNF, DNF, or NNF (see Sect. 1.3). Consider, for example, the
two CNF formulas

B1 := (x1 ∧ (x2 ∨ x3)) , B2 := (x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3)) . (2.11)

Although the two formulas are in the same normal form and logically equiva-
lent, they are syntactically different. The BDD representations of B1 and B2,
on the other hand, are the same.

One implication of canonicity is that all tautologies have the same BDD
(a single node with a label “1”) and all contradictions also have the same
BDD (a single node with a label “0”). Thus, although two CNF formulas of
completely different size can both be unsatisfiable, their BDD representations
are identical: a single node with the label “0”. As a consequence, checking
for satisfiability, validity, or contradiction can be done in constant time for a
given BDD. There is no free lunch, however: building the BDD for a given
formula can take exponential space and time, even if in the end it results in
a single node.

We start with a simple binary decision tree to represent a Boolean
formula. Consider the formula

B := ((x1 ∧ x2) ∨ (¬x1 ∧ x3)) . (2.12)

The binary decision tree in Fig. 2.11 represents this formula with the variable
ordering x1, x2, x3. Notice how this order is maintained in each path along the
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Fig. 2.11. A binary decision tree for (2.12). The drawing follows the convention by
which dashed edges represent an assignment of 0 to the variable labeling the source
node

tree, and that each of these variables appears exactly once in each path from
the root to one of the leaves.

Such a binary decision tree is not any better, in terms of space consump-
tion, than an explicit truth table, as it has 2n leaves. Every path in this
tree, from root to leaf, corresponds to an assignment. Every path that leads
to a leaf “1” corresponds to a satisfying assignment. For example, the path
x1 = 1, x2 = 1, x3 = 0 corresponds to a satisfying assignment of our formula
B because it ends in a leaf with the label “1”. Altogether, four assignments
satisfy this formula. The question is whether we can do better than a binary
decision tree in terms of space consumption, as there is obvious redundancy in
this tree. We now demonstrate the three reduction rules that can be applied
to such trees. Together they define what a reduced ordered BDD is.

• Reduction #1. Merge the leaf nodes into two nodes “1” and “0”. The
result of this reduction appears in Fig. 2.12.

• Reduction #2. Merge isomorphic subtrees. Isomorphic subtrees are sub-
trees that have roots that represent the same variable (if these are leaves,
then they represent the same Boolean value), and have left and right chil-
dren that are isomorphic as well. After applying this rule to our graph, we
are left with the diagram in Fig. 2.13. Note how the subtrees rooted at the
left two nodes labeled with x3 are isomorphic and are therefore merged in
this reduction.

• Reduction #3. Removing redundant nodes. In the diagram in Fig. 2.13,
it is clear that the left x2 node is redundant, because its value does not
affect the values of paths that go through it. The same can be said about
the middle and right nodes corresponding to x3. In each such case, we can
simply remove the node, while redirecting its incoming edge to the node
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Fig. 2.12. After applying reduction #1, merging the leaf nodes into two nodes
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x1
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x3x3 x3
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Fig. 2.13. After applying reduction #2, merging isomorphic subtrees

to which both of its edges point. This reduction results in the diagram in
Fig. 2.14.

The second and third reductions are repeated as long as they can be applied.
At the end of this process, the BDD is said to be reduced.

Several important properties of binary trees are maintained during the
reduction process:

1. Each terminal node v is associated with a Boolean value val(v). Each
�

�

�

�

val(v)
nonterminal node v is associated with a variable, denoted by var(v) ∈ �

�

�

�

var(v)V ar(B).
2. Every nonterminal node v has exactly two children, denoted by low(v) �

�

�

�

low(v)and high(v), corresponding to a false or true assignment to var(v).
�

�

�

�

high(v)
3. Every path from the root to a leaf node contains not more than one

occurrence of each variable. Further, the order of variables in each such
path is consistent with the order in the original binary tree.
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Fig. 2.14. After applying reduction #3, removing redundant nodes

4. A path to the “1” node through all variables corresponds to an assignment
that satisfies the formula.

Unlike a binary tree, a BDD can have paths to the leaf nodes through only
some of the variables. Such paths to the “1” node satisfy the formula regardless
of the values given to the other variables, which are appropriately known by
the name don’t cares. A reduced BDD has the property that it does not
contain any redundant nodes or isomorphic subtrees, and, as indicated earlier,
it is canonical.

2.3.2 Building BDDs from Formulas

The process of turning a binary tree into a BDD helps us to explain the
reduction rules, but is not very useful by itself, as we do not want to build the
binary decision tree in the first place, owing to its exponential size. Instead, we
create the ROBDDs directly: given a formula, we build its BDD recursively
from the BDDs of its subexpressions. For this purpose, Bryant defined the
procedure Apply, which, given two BDDs B and B′, builds a BDD for B ⋆B′,

�

�

�

�
B ⋆ B′

where ⋆ stands for any one of the 16 binary Boolean operators (such as “∧”,
“∨”, and “ =⇒ ”). The complexity of Apply is bounded by |B| · |B′|, where
|B| and |B′| denote the respective sizes of B and B′.

In order to describe Apply, we first need to define the restrict operation.
This operation is simply an assignment of a value to one of the variables in
the BDD. We denote the restriction of B to x = 0 by B|x=0 or, in other words,

�

�

�

�

B|x=0

the BDD corresponding to the function B after assigning 0 to x. Given the
BDD for B, it is straightforward to compute its restriction to x = 0. For every
node v such that var(v) = x, we remove v and redirect the incoming edges of
v to low(v). Similarly, if the restriction is x = 1, we redirect all the incoming
edges to high(v).
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Fig. 2.15. Restricting B to x2 = 0. This operation is denoted by B|x2=0

Let B denote the function represented by the BDD in Fig. 2.14. The dia-
gram in Fig. 2.15 corresponds to B|x2=0, which is the function ¬x1∧x3. Let v
and v′ denote the root variables of B and B′, respectively, and let var(v) = x
and var(v′) = x′. Apply operates recursively on the BDD structure, following
one of these four cases:

1. If v and v′ are both terminal nodes, then B ⋆ B′ is a terminal node with
the value val(v) ⋆ val(v′).

2. If x = x′, that is, the roots of both B and B′ correspond to the same
variable, then we apply what is known as Shannon expansion:

B ⋆ B′ := (¬x ∧ (B|x=0 ⋆ B′|x=0)) ∨ (x ∧ (B|x=1 ⋆ B′|x=1)) . (2.13)

Thus, the resulting BDD has a new node v′′ such that var(v′′) = x,
low(v′′) points to a BDD representing B|x=0 ⋆ B′

x=0, and high(v′′) points
to a BDD representing B|x=1 ⋆ B′|x=1. Note that both of these restricted
BDDs refer to a smaller set of variables than do B and B′. Therefore, if
B and B′ refer to the same set of variables, then this process eventually
reaches the leaves, which are handled by the first case.

3. If x �= x′ and x precedes x′ in the given variable order, we again apply
Shannon expansion, except that this time we use the fact that the value
of x does not affect the value of B′, that is, B′|x=0 = B′|x=1 = B′. Thus,
the formula above simplifies to

B ⋆ B′ := (¬x ∧ (B|x=0 ⋆ B′)) ∨ (x ∧ (B|x=1 ⋆ B′)) . (2.14)

Once again, the resulting BDD has a new node v′′ such that var(v′′) = x,
low(v′′) points to a BDD representing B|x=0 ⋆ B′, and high(v′′) points to
a BDD representing B|x=1 ⋆B′. Thus, the only difference is that we reuse
B′ in the recursive call as is, instead of its restriction to x = 0 or x = 1.

4. The case in which x �= x′ and x follows x′ in the given variable order is
dual to the previous case.



48 2 Decision Procedures for Propositional Logic

We now demonstrate Apply with an example.

Example 2.17. Assume that we are given the BDDs for B := (x1 ⇐⇒ x2)
and for B′ := ¬x2, and that we want to compute the BDD for B∨B′. Both the
source BDDs and the target BDD follow the same order: x1, x2. Figure 2.16
presents the BDDs for B and B′.

0 1

x2x2

x1

x2

0 10 1

Fig. 2.16. The two BDDs corresponding to B := (x1 ⇐⇒ x2) (left) and B′ := ¬x2

(right)

0

x1

BDD for
B|x1=0 ∨ B

′

BDD for
B|x1=1 ∨ B

′

1

Fig. 2.17. Since x1 appears before x2 in the variable order, we apply case 3

Since the root nodes of the two BDDs are different, we apply case 3.
This results in the diagram in Fig. 2.17. In order to compute the BDD for
B|x1=0 ∨ B′, we first compute B|x1=0. This results in the diagram on the left
of Fig. 2.18. To compute B|x1=0 ∨B

′, we apply case 2, as the root nodes refer
to the same variable, x2. This results in the BDD on the right of the figure.
Repeating the same process for high(x1), results in the leaf BDD “1”, and
thus our final BDD is as shown in Fig. 2.19. This BDD represents the function
x1 ∨ (¬x1 ∧ ¬x2), which is indeed the result of B ∨ B′.

The size of the BDD depends strongly on the variable order. That is, con-
structing the BDD for a given function using different variable orders results
in radically different BDDs. There are functions for which one BDD order
results in a BDD with a polynomial number of nodes, whereas with a dif-
ferent order the number of nodes is exponential. Bryant gives the function
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0 ∨ 0

BDD for

∨ =

x2 x2

0 1 0 1 0 1

x2

Fig. 2.18. Applying case 2, since the root nodes refer to the same variable. The left
and right leaf nodes of the resulting BDD are computed following case 1, since the
source nodes are leaves

10

x2

x1

0 1

Fig. 2.19. The final BDD for B ∨ B′

(x1 ⇐⇒ x′
1) ∧ · · · ∧ (xn ⇐⇒ x′

n) as an example of this phenomenon: us-
ing the variable order x1, x

′
1, x2, x

′
2, . . . , xn, x′

n, the size of the BDD is 3n + 2
while with the order x1, x2, . . . xn, x′

1, x
′
2, . . . , x

′
n, the BDD has 3 ·2n−1 nodes.

Furthermore, there are functions for which there is no variable order that re-
sults in a polynomial number of nodes. Multiplication of bit vectors (arrays
of Boolean variables; see Chap. 6) is one such well-known example. Finding a
good variable order is a subject that has been researched extensively and has
yielded many PhD theses. It is an NP-complete problem to decide whether a
given variable order is optimal [36]. Recall that once the BDD has been built,
checking satisfiability and validity is a constant-time operation. Thus, if we
could always easily find an order in which building the BDD takes polynomial
time, this would make satisfiability and validity checking a polynomial-time
operation.

There is a very large body of work on BDDs and their extensions – variable-
ordering strategies is only one part of this work. Extending BDDs to handle
variables of types other than Boolean is an interesting subject, which we briefly
discuss as part of Problem 2.15. Another interesting topic is alternatives to
Apply. As part of Problem 2.14, we describe one such alternative based on a
recursive application of the ite (if-then-else) function.
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2.4 Problems

2.4.1 Warm-up Exercises

Problem 2.1 (modeling: simple). Consider three persons A, B, and C who
need to be seated in a row. But:

• A does not want to sit next to C.
• A does not want to sit in the left chair.
• B does not want to sit to the right of C.

Write a propositional formula that is satisfiable if and only if there is a seat
assignment for the three persons that satisfies all constraints. Is the formula
satisfiable? If so, give an assignment.

Problem 2.2 (modeling: program equivalence). Show that the two
if-then-else expressions below are equivalent:

!(a ‖ b) ? h : !(a == b) ? f : g !(!a ‖ !b) ? g : (!a && !b) ? h : f

You can assume that the variables have only one bit.

Problem 2.3 (SAT solving). Consider the following set of clauses:

(x5 ∨ ¬x1 ∨ x3) , (¬x1 ∨ x2) ,
(¬x2 ∨ x4) , (¬x3 ∨ ¬x4) ,
(¬x5 ∨ x1) , (¬x5 ∨ ¬x6) ,
(x6 ∨ x1) .

(2.15)

Apply the Berkmin decision heuristic, including the application of Analyze-
Conflict with conflict-driven backtracking. In the case of a tie (during the
application of VSIDS), make a decision that leads to a conflict. Show the
implication graph at each decision level.

Problem 2.4 (BDDs). Construct the BDD for ¬(x1 ∨ (x2 ∧ ¬x3)) with the
variable order x1, x2, x3,

(a) starting from a decision tree, and
(b) bottom-up (starting from the BDDs of the atoms x1, x2, x3).

2.4.2 Modeling

Problem 2.5 (unwinding a finite automaton). A nondeterministic finite
automaton is a 5-tuple 〈Q,Σ, δ, I, F 〉, where

• Q is a finite set of states,
• Σ is the alphabet (a finite set of letters),
• δ : Q×Σ −→ 2Q is the transition function (2Q is the power set of Q),
• I ⊆ Q is the set of initial states, and
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• F ⊆ Q is the set of accepting states.

The transition function determines to which states we can move given the
current state and input. The automaton is said to accept a finite input string
s1, . . . , sn with si ∈ Σ if and only if there is a sequence of states q0, . . . , qn

with qi ∈ Q such that

• q0 ∈ I ,
• ∀i ∈ {1, . . . , n}. qi ∈ δ(qi−1, si), and
• qn ∈ F .

For example, the automaton in Fig. 2.20 is defined by Q = {s1, s2}, Σ = {a, b},
δ(s1, a) = {s1}, δ(s1, b) = {s1, s2}, I = {s1}, F = {s2}, and accepts strings
that end with b. Given a nondeterministic finite automaton 〈Q,Σ, δ, I, F 〉 and
a fixed input string s1, . . . , sn, si ∈ Σ, construct a propositional formula that
is satisfiable if and only if the automaton accepts the string.

b

s1 s2

a, b

Fig. 2.20. A nondeterministic finite automaton accepting all strings ending with
the letter b

Problem 2.6 (assigning teachers to subjects). A problem of covering m
subjects with k teachers may be defined as follows. Let T : {T1, . . . , Tn} be a
set of teachers. Let S : {S1, . . . , Sm} be a set of subjects. Each teacher t ∈ T
can teach some subset S(t) of the subjects S (i.e., S(t) ⊆ S). Given a natural
number k ≤ n, is there a subset of size k of the teachers that together covers
all m subjects, i.e., a subset C ⊆ T such that |C| = k and (

⋃
t∈C S(t)) = S?

Problem 2.7 (Hamiltonian cycle). Show a formulation in propositional
logic of the following problem: given a directed graph, does it contain a Hamil-
tonian cycle (a closed path that visits each node, other than the first, exactly
once)?

2.4.3 Complexity

Problem 2.8 (space complexity of DPLL with learning). What is the
worst-case space complexity of a DPLL SAT solver as described in Sect. 2.2,
in the following cases

(a) Without learning,
(b) With learning, i.e., by recording conflict clauses,
(c) With learning in which the length of the recorded conflict clauses is

bounded by a natural number k.
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Problem 2.9 (polynomial-time (restricted) SAT). Consider the follow-
ing two restriction of CNF:

• A CNF in which there is not more than one positive literal in each clause.
• A CNF formula in which no clause has more than two literals.

1. Show a polynomial-time algorithm that solves each of the problems above.
2. Show that every CNF can be converted to another CNF which is a con-

junction of the two types of formula above. In other words, in the resulting
formula all the clauses are either unary, binary, or have not more than one
positive literal. How many additional variables are necessary for the con-
version?

2.4.4 DPLL SAT Solving

Problem 2.10 (backtracking level). We saw that SAT solvers working with
conflict-driven backtracking backtrack to the second highest decision level dl
in the asserting conflict clause. This wastes all of the work done from decision
level dl + 1 to the current one, say dl′ (although, as we mentioned, this has
other advantages that outweigh this drawback). Suppose we try to avoid this
waste by performing conflict-driven backtracking as usual, but then repeat the
assignments from levels dl + 1 to dl′ − 1 (i.e., override the standard decision
heuristic for these decisions). Can it be guaranteed that this reassignment will
progress without a conflict?

Problem 2.11 (is the first UIP well defined?). Prove that in a conflict
graph, the notion of a first UIP is well defined, i.e., there is always a single
UIP closest to the conflict node. Hint: you may use the notion of dominators
from graph theory.

2.4.5 Related Problems

Problem 2.12 (incremental satisfiability). Given two CNF formulas C1

and C2, under what conditions can a conflict clause learned while solving C1

be reused when solving C2? In other words, if c is a conflict clause learned
while solving C1, under what conditions is C2 satisfiable if and only if C2 ∧ c
is satisfiable? How can the condition that you suggest be implemented inside
a SAT solver? Hint : think of CNF formulas as sets of clauses.

Problem 2.13 (unsatisfiable cores).

(a) Suggest an algorithm that, given a resolution graph (see Definition 2.14),
finds an unsatisfiable core of the original formula that is small as possible
(by this we do not mean that it has to be minimal).

(b) Given an unsatisfiable core, suggest a method that attempts to minimize
it further.
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2.4.6 Binary Decision Diagrams

Problem 2.14 (implementing Apply with ite). (Based on [29]) Efficient
implementations of BDD packages do not use Apply; rather they use a re-
cursive procedure based on the ite (if-then-else) operator. All binary Boolean
operators can be expressed as such expressions. For example,

f ∨ g = ite(f, 1, g), f ∧ g = ite(f, g, 0),
f ⊕ g = ite(f,¬g, g), ¬f = ite(f, 0, 1) .

(2.16)

How can a BDD for the ite operator be constructed? Assume that x labels
the root nodes of two BDDs f and g, and that we need to compute ite(c, f, g).
Observe the following equivalence:

ite(c, f, g) = ite(x, ite(c|x=1, f |x=1, g|x=1), ite(c|x=0, f |x=0, g|x=0)) . (2.17)

Hence, we can construct the BDD for ite(c, f, g) on the basis of a recursive con-
struction. The root node of the result is x, low(x) = ite(c|x=0, f |x=0, g|x=0),
and high(x) = ite(c|x=1, f |x=1, g|x=1). The terminal cases are

ite(1, f, g) = ite(0, g, f) = ite(f, 1, 0) = ite(g, f, f) = f ,
ite(f, 0, 1) = ¬f .

1. Let f := (x ∧ y), g := ¬x. Show an ite-based construction of f ∨ g.
2. Present pseudocode for constructing a BDD for the ite operator. Describe

the data structure that you assume. Explain how your algorithm can be
used to replace Apply.

Problem 2.15 (binary decision diagrams for non-Boolean functions).
(Based on [47].) Let f be a function mapping a vector of m Boolean variables
to an integer, i.e., f : Bm �→ Z, where B = {0, 1}.

Let {I1, . . . , IN}, N ≤ 2m, be the set of possible values of f . The function
f partitions the space Bm of Boolean vectors into N sets {S1, . . . , SN}, such
that for i ∈ {1 . . . N}, Si = {x̄ | f(x̄) = Ii} (where x̄ denotes a vector). Let
fi be a characteristic function of Si (i.e., a function mapping a vector x̄ to
1 if f(x̄) ∈ Si and to 0 otherwise). Every function f(x̄) can be rewritten as
ΣN

i=1fi(x̄) · Ii, a form that can be represented as a BDD with {I1, . . . , IN}
as its terminal nodes. Figure 2.21 shows such a multiterminal binary decision
diagram (MTBDD) for the function 2x1 + 2x2.

Show an algorithm for computing f ⊙ g, where f and g are multitermi-
nal BDDs, and ⊙ is some arithmetic binary operation. Compute with your
algorithm the MTBDD of f ⊙ g, where

f := if x1 then 2x2 + 1 else − x2 ,
g := if x2 then 4x1 else x3 + 1 ,

following the variable order x1, x2, x3.
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x2

x1

0 1

20

x2

Fig. 2.21. A multiterminal BDD for the function f(x, y) = 2x1 + 2x2

2.5 Bibliographic Notes

SAT

The Davis–Putnam–Loveland–Logemann framework was a two-stage inven-
tion. In 1960, Davis and Putnam considered CNF formulas and offered a
procedure to solve it based on an iterative application of three rules [57]: the
pure literal rule, the unit clause rule (what we now call BCP), and what they
called “the elimination rule”, which is a rule for eliminating a variable by in-
voking resolution (e.g., to eliminate x from a given CNF, apply resolution to
each pair of clauses of the form (x∨A)∧ (¬x∨B), erase the resolving clauses,
and maintain the resolvent). Their motivation was to optimize a previously
known incomplete technique for deciding first-order formulas. Note that at
the time, “optimizing” also meant a procedure that was easier to conduct
by hand. In 1962, Loveland and Logemann, two programmers hired by Davis
and Putnam to implement their idea, concluded that it was more efficient to
split and backtrack rather than to apply resolution, and together with Davis
published what we know today as the basic DPLL framework [56]. Numerous
SAT solvers were developed through the years on the basis of this framework.
The alternative approach of stochastic solvers, which were not discussed in
length in this chapter, was led for many years by the GSAT and WalkSat
solvers [176].

The definition of the constraints satisfaction problem (CSP) [132] by Mon-
tanari (and even before that by Waltz in 1975), a problem which generalizes
SAT to arbitrary finite discrete domains and arbitrary constraints, and the
development of efficient CSP solvers, led to cross-fertilization between the
two fields: nonchronological backtracking, for example, was first used with
the CSP, and then adopted by Marques-Silva and Sakallah for their GRASP
SAT solver [182], which was the fastest from 1996 to 2000. The addition
of conflict clauses in GRASP was also influenced (although in significantly
changed form) by earlier techniques called no-good recording that were applied
to CSP solvers. Bayardo and Schrag [15] also published a method for adapt-
ing conflict-driven learning to SAT. The introduction of Chaff in 2001 [133]
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by Moskewicz, Madigan, Zhao, Zhang and Malik marked a breakthrough in
performance that led to renewed interest in the field. These authors intro-
duced the idea of conflict-driven nonchronological backtracking coupled with
VSIDS, the first conflict-driven decision heuristic. They also introduced a new
mechanism for performing fast BCP, a subject not covered in this chapter, em-
pirically identified the first UIP scheme as the most efficient out of various al-
ternative schemes, and introduced many other means for efficiency. The solver
Siege introduced Variable-Move-To-Front (VMTF), a decision heuristic that
moves a constant number of variables from the conflict clause to the top of
the list, which performs very well in practice [171]. An indication of how rapid
the progress in this field has been was given in the 2006 SAT competition: the
best solver in the 2005 competition took ninth place, with a large gap in the
run time compared with the 2006 winner, MiniSat-2 [73]. New SAT solvers
are introduced every year; readers interested in the latest tools should check
the results of the annual SAT competitions. In 2007 the solver RSAT [151]
won the “industrial benchmarks” category. RSAT was greatly influenced by
MiniSat, but includes various improvements such as ordering of the impli-
cations in the BCP stack, an improved policy for restarting the solver, and
repeating assignments that are erased while backtracking.

The realization that different classes of problems (e.g., random instances,
industrial instances from various problem domains, crafted problems) are best
solved with different solvers (or different run time parameters of the same
solvers), led to a strategy of invoking an algorithm portfolio. This means
that one out of n predefined solvers is chosen automatically for a given problem
instance, based on a prediction of which solver is likely to perform best. First,
a large “training set” is used for building empirical hardness models [143]
based on various attributes of the instances in this set. Then, given a problem
instance, the run time of each of the n solvers is predicted, and accordingly the
solver is chosen for the task. SATzilla [205] is a successful algorithm portfolio
based on these ideas that won several categories in the 2007 competition.

Zhang and Malik described a procedure for efficient extraction of un-
satisfiable cores and unsatisfiability proofs from a SAT solver [210, 211].
There are many algorithms for minimizing such cores – see, for exam-
ple, [81, 98, 118, 144]. The description of the main SAT procedure in this
chapter was inspired mainly by [210, 211]. Berkmin, a SAT solver developed
by Goldberg and Novikov, introduced what we have named “the Berkmin de-
cision heuristic” [88]. The connection between the process of deriving conflict
clauses and resolution was discussed in, for example, [16, 80, 116, 207, 210].

Incremental satisfiability in its modern version, i.e., the problem of which
conflict clauses can be reused when solving a related problem (see Prob-
lem 2.12) was introduced by Strichman in [180, 181] and independently by
Whittemore, Kim, and Sakallah in [197]. Earlier versions of this problem were
more restricted, for example the work of Hooker [96] and of Kim, Whittemore,
Marques-Silva, and Sakallah [105].
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There is a large body of theoretical work on SAT as well. Probably the
best-known is related to complexity theory: SAT played a major role in the
theoretical breakthrough achieved by Cook in 1971 [50], who showed that ev-
ery NP problem can be reduced to SAT. Since SAT is in NP, this made it
the first problem to be identified as belonging to the NP-complete complexity
class. The general scheme for these reductions (through a translation to a Tur-
ing machine) is rarely used and is not efficient. Direct translations of almost all
of the well-known NP problems have been suggested through the years, and,
indeed, it is always an interesting question whether it is more efficient to solve
problems directly or to reduce them to SAT (or to any other NP-complete
problem, for that matter). The incredible progress in the efficiency of these
solvers in the last decade has made it very appealing to take the translation
option. By translating problems to CNF we may lose high-level information
about the problem, but we can also gain low-level information that is harder
to detect in the original representation of the problem.

An interesting angle of SAT is that it attracts research by physicists!5

Among other questions, they attempt to solve the phase transition prob-
lem [45, 128]: why and when does a randomly generated SAT problem (ac-
cording to some well-defined distribution) become hard to solve? There is a
well-known result showing empirically that randomly generated SAT instances
are hardest when the ratio between the numbers of clauses and variables is
around 4.2. A larger ratio makes the formula more likely to be unsatisfiable,
and the more constraints there are, the easier it is to detect the unsatisfia-
bility. A lower ratio has the opposite effect: it makes the formula more likely
to be satisfiable and easier to solve. Another interesting result is that as the
formula grows, the phase transition sharpens, asymptotically reaching a sharp
phase transition, i.e., a threshold ratio such that all formulas above it are un-
satisfiable, whereas all formulas beneath it are satisfiable. There have been
several articles about these topics in Science [106, 127], Nature [131] and even
The New York Times [102].

Binary Decision Diagrams

Binary decision diagrams were introduced by Lee in 1959 [115], and explored
further by Akers [3]. The full potential for efficient algorithms based on the
data structure was investigated by Bryant [35]: his key extensions were to
use a fixed variable ordering (for canonical representation) and shared sub-
graphs (for compression). Together they form what we now refer to as reduced-
ordered BDDs. Generally ROBDDs are efficient data structures accompanied
by efficient manipulation algorithms for the representation of sets and rela-
tions. ROBDDs later became a vital component of symbolic model checking ,
a technique that led to the first large-scale use of formal verification tech-
niques in industry (mainly in the field of electronic design automation). Nu-
merous extensions of ROBDDs exist in the literature, some of which extend

5 The origin of this interest is in statistical mechanics.



2.6 Glossary 57

the logic that the data structure can represent beyond propositional logic,
and some adapt it to a specific need. Multiterminal BDDs (also discussed in
Problem 2.15), for example, were introduced in [47] to obtain efficient spectral
transforms, and multiplicative binary moment diagrams (*BMDs) [37] were
introduced for efficient representation of linear functions. There is also a large
body of work on variable ordering in BDDs and dynamic variable reordering
(ordering of the variables during the construction of the BDD, rather than
according to a predefined list).

It is clear that BDDs can be used everywhere SAT is used (in its basic
functionality). SAT is typically more efficient, as it does not require expo-
nential space even in the worst case.6 The other direction is not as simple,
because BDDs, unlike CNF, are canonical. Furthermore, finding all solutions
to the Boolean formula represented by a BDD is linear in the number of solu-
tions (all paths leading to the “1” node), while worst-case exponential time is
needed for each solution of the CNF. There are various extensions to SAT (al-
gorithms for what is known as all-SAT, the problem of finding all solutions to
a propositional formula) that attempt to solve this problem in practice using
a SAT solver.

2.6 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

xi@d (SAT) xi is assigned true at decision level d 30

val(v) (BDD) the 0 or 1 value of a BDD leaf node 45

var(v) (BDD) the variable associated with an internal BDD
node

45

low(v) (BDD) the node pointed to by node v when v is
assigned 0

45

high(v) (BDD) the node pointed to by node v when v is
assigned 1

45

B ⋆ B′ (BDD) ⋆ is any of the 16 binary Boolean operators 46

B|x=0 (BDD) simplification of B after assigning x = 0 (also
called “restriction”)

46

6 This characteristic of SAT can be achieved by restricting the number of added
conflict clauses. In practice, even without this restriction, memory is rarely the
bottleneck.
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Equality Logic and Uninterpreted Functions

3.1 Introduction

This chapter introduces the theory of equality, also known by the name
equality logic. Equality logic can be thought of as propositional logic where
the atoms are equalities between variables over some infinite type or between
variables and constants. As an example, the formula (y = z ∨ (¬(x = z)∧x =
2)) is a well-formed equality logic formula, where x, y, z ∈ R (R denotes the
reals). An example of a satisfying assignment is {x �→ 2, y �→ 2, z �→ 0}.

Definition 3.1 (equality logic). An equality logic formula is defined by the
following grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : term = term

term : identifier | constant

where the identifiers are variables defined over a single infinite domain such
as the Reals or Integers.1 Constants are elements from the same domain
as the identifiers.

3.1.1 Complexity and Expressiveness

The satisfiability problem for equality logic is NP-complete. We leave the
proof of this claim as an exercise (Problem 4.7 in Chap. 4). The fact that
both equality logic and propositional logic are NP-complete implies that they
can model the same decision problems (with not more than a polynomial
difference in the number of variables). Why should we study both, then?

For two main reasons: convenience of modeling, and efficiency. It is more
natural and convenient to use equality logic for modeling certain problems

1 The restriction to a single domain (also called a single type or a single sort) is
not essential. It is introduced for the sake of simplicity of the presentation.
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than to use propositional logic, and vice versa. As for efficiency, the high-
level structure in the input equality logic formula can potentially be used to
make the decision procedure work faster. This information may be lost if the
problem is modeled directly in propositional logic.

3.1.2 Boolean Variables

Frequently, equality logic formulas are mixed with Boolean variables. Never-
theless, we shall not integrate them into the definition of the theory, in order
to keep the description of the algorithms simple. Boolean variables can easily
be eliminated from the input formula by replacing each such variable with an
equality between two new variables. But this is not a very efficient solution.
As we progress in this chapter, it will be clear that it is easy to handle Boolean
variables directly, with only small modifications to the various decision pro-
cedures. The same observation applies to many of the other theories that we
consider in this book.

3.1.3 Removing the Constants: A Simplification

Theorem 3.2. Given an equality logic formula ϕE, there is an algorithm that
�

�

�

�
ϕE

generates an equisatisfiable formula (see Definition 1.9) ϕE′ without constants,
in polynomial time.

�

�

�

�

Algorithm 3.1.1: Remove-constants

Input: An equality logic formula ϕE with constants c1, . . . , cn

Output: An equality logic formula ϕE′ such that ϕE′ and ϕE are
equisatisfiable and ϕE′ has no constants

1. ϕE′ := ϕE.
2. In ϕE′, replace each constant ci, 1 ≤ i ≤ n, with a new variable Cci

.
�

�

�

�

Cci

3. For each pair of constants ci, cj such that 1 ≤ i < j ≤ n, add the
constraint Cci

�= Ccj
to ϕE′.

Algorithm 3.1.1 eliminates the constants from a given formula by replacing
them with new variables. Problem 3.2, and, later, Problem 4.4, focus on this
procedure. Unless otherwise stated, we assume from here on that the input
equality formulas do not have constants.

3.2 Uninterpreted Functions

Equality logic is far more useful if combined with uninterpreted functions.
Uninterpreted functions are used for abstracting, or generalizing, theorems.
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Unlike other function symbols, they should not be interpreted as part of a
model of a formula. In the following formula, for example, F and G are unin-
terpreted, whereas the binary function symbol “+” is interpreted as the usual
addition function:

F (x) = F (G(y)) ∨ x + 1 = y . (3.1)

Definition 3.3 (equality logic with uninterpreted functions (EUF)).
An equality logic formula with uninterpreted functions and uninterpreted
predicates2 is defined by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : term = term | predicate-symbol (list of terms)

term : identifier | function-symbol (list of terms)

We generally use capital letters to denote uninterpreted functions, and use
the superscript UF to denote EUF formulas.

Aside: The Logic Perspective
To explain the meaning of uninterpreted functions from the perspective of
logic, we have to go back to the notion of a theory, which was explained in
Sect. 1.4. Recall the set of axioms (1.35), and that in this chapter we refer to
the quantifier-free fragment.

Only a single additional axiom (an axiom scheme, actually) is necessary
in order to extend equality logic to EUF. For each n-ary function symbol,
n > 0,

∀t1, . . . , tn, t′1, . . . , t
′
n.∧

i ti = t′i =⇒ F (t1, . . . , tn) = F (t′1, . . . , t
′
n) (Congruence) ,

(3.2)

where t1, . . . , tn, t′1, . . . , t
′
n should be instantiated with terms that appear as

arguments of uninterpreted functions in the formula. A similar axiom can be
defined for uninterpreted predicates.

Thus, whereas in theories where the function symbols are interpreted
there are axioms to define their semantics – what we want them to mean –
in a theory over uninterpreted functions, the only restriction we have over
a satisfying interpretation is that imposed by functional consistency, namely
the restriction imposed by the (Congruence) rule.

3.2.1 How Uninterpreted Functions Are Used

Replacing functions with uninterpreted functions in a given formula is a com-
mon technique for making it easier to reason about (e.g., to prove its validity).

2 From here on, we refer only to uninterpreted functions. Uninterpreted predicates
are treated in a similar way.
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At the same time, this process makes the formula weaker, which means that
it can make a valid formula invalid. This observation is summarized in the
following relation, where ϕUF is derived from a formula ϕ by replacing some

�

�

�

�
ϕUF

or all of its functions with uninterpreted functions:

|= ϕUF =⇒ |= ϕ . (3.3)

Uninterpreted functions are widely used in calculus and other branches of
mathematics, but in the context of reasoning and verification, they are mainly
used for simplifying proofs. Under certain conditions, uninterpreted functions
let us reason about systems while ignoring the semantics of some or all func-
tions, assuming they are not necessary for the proof. What does it mean to
ignore the semantics of a function? (A formal explanation is briefly given in
the aside on p. 61.) One way to look at this question is through the axioms
that the function can be defined by. Ignoring the semantics of the function
means that an interpretation neednot satisfy these axioms in order to satisfy
the formula. The only thing it needs to satisfy is an axiom stating that the
uninterpreted function, like any function, is consistent, i.e., given the same
inputs, it returns the same outputs. This is the requirement of functional
consistency (also called functional congruence):

Functional consistency: Instances of the same function return the
same value if given equal arguments.

There are many cases in which the formula of interest is valid regardless
of the interpretation of a function. In these cases, uninterpreted functions
simplify the proof significantly, especially when it comes to mechanical proofs
with the aid of automatic theorem provers.

Assume that we have a method for checking the validity of an EUF formula.
Relying on this assumption, the basic scheme for using uninterpreted functions
is the following:

1. Let ϕ denote a formula of interest that has interpreted functions. As-
sume that a validity check of ϕ is too hard (computationally), or even
impossible.

2. Assign an uninterpreted function to each interpreted function in ϕ. Sub-
stitute each function in ϕ with the uninterpreted function to which it is
mapped. Denote the new formula by ϕUF.

3. Check the validity of ϕUF. If it is valid, return “ϕ is valid” (this is justified
by (3.3)). Otherwise, return “don’t know”.

The transformation in step 2 comes at a price, of course, as it loses information.
As mentioned earlier, it causes the procedure to be incomplete, even if the
original formula belongs to a decidable logic. When there exists a decision
procedure for the input formula but it is too computationally hard to solve,
one can design a procedure in which uninterpreted functions are gradually
substituted back to their interpreted versions. We shall discuss this option
further in Sect. 3.4.
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3.2.2 An Example: Proving Equivalence of Programs

As a motivating example, consider the problem of proving the equivalence of
the two C functions shown in Fig. 3.1. More specifically, the goal is to prove
that they return the same value for every possible input in.

int power3(int in) {
int i, out_a;

out_a = in;
for (i = 0; i < 2; i++)

out_a = out_a * in;
return out_a; }

int power3_new(int in) {
int out_b;

out_b = (in * in) * in;
return out_b; }

(a) (b)

Fig. 3.1. Two C functions. The proof of their equivalence is simplified by replacing
the multiplications (“*”) in both programs with uninterpreted functions

In general, proving the equivalence of two programs is undecidable, which
means that there is no sound and complete method to prove such an equiv-
alence. In the present case, however, equivalence can be decided.3 A key ob-
servation about these programs is that they have only bounded loops, and
therefore it is possible to compute their input/output relations. The deriva-
tion of these relations from these two programs can be done as follows:

1. Remove the variable declarations and “return” statements.
2. Unroll the for loop.
3. Replace the left-hand side variable in each assignment with a new auxiliary

variable.
4. Wherever a variable is read (referred to in an expression), replace it with

the auxiliary variable that replaced it in the last place where it was as-
signed.

5. Conjoin all program statements.

These operations result in the two formulas ϕa and ϕb, which are shown in
Fig. 3.2.4

It is left to show that these two I/O relations are actually equivalent, that
is, to prove the validity of

ϕa ∧ ϕb =⇒ out2 a = out0 b . (3.4)

3 The undecidability of program verification and program equivalence is caused by
unbounded memory usage, which does not occur in this example.

4 A generalization of this form of translation to programs with “if” branches and
other constructs is known as static-single-assignment(SSA). SSA is used in
most optimizing compilers and can be applied to the verification of programs
with bounded loops in popular programming languages such as C (see [107]). See
also Example 1.25.
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out0 a = in ∧
out1 a = out0 a ∗ in ∧
out2 a = out1 a ∗ in

out0 b = (in∗in)∗in;

(ϕa) (ϕb)

Fig. 3.2. Two formulas corresponding to the programs (a) and (b) in Fig. 3.1. The
variables are defined over finite-width integers (i.e., bit vectors)

Uninterpreted functions can help in proving the equivalence of the programs
(a) and (b), following the general scheme suggested in Sect. 3.2.1. The motiva-
tion in this case is computational: deciding formulas with multiplication over,
for example, 32-bit variables is notoriously hard. Replacing the multiplication
symbol with uninterpreted functions can solve the problem.

out0 a = in ∧
out1 a = G(out0 a, in) ∧
out2 a = G(out1 a, in)

out0 b = G(G(in, in), in)

(ϕUF

a ) (ϕUF

b )

Fig. 3.3. After replacing “∗” with the uninterpreted function G

Figure 3.3 presents ϕUF

a and ϕUF

b , which are ϕa and ϕb after the multi-
plication function has been replaced with a new uninterpreted function G.
Similarly, if we also had addition, we could replace all of its instances with
another uninterpreted function, say F . Instead of validating (3.4), we can now
attempt to validate

ϕUF

a ∧ ϕUF

b =⇒ out2 a = out0 b . (3.5)

Alternative methods to prove the equivalence of these two programs are
discussed in the aside on p. 65. Other examples of the use of uninterpreted
functions are presented in Sect. 3.5.

3.3 From Uninterpreted Functions to Equality Logic

Luckily, we do not need to examine all possible interpretations of an uninter-
preted function in a given EUF formula in order to know whether it is valid.
Instead, we rely on the strongest property that is common to all functions,
namely functional consistency.5 Relying on this property, we can reduce the
decision problem of EUF formulas to that of deciding equality logic. We shall

5 Note that the term function here refers to the mathematical definition. The situ-
ation is more complicated when considering functions in programming languages
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Aside: Alternative Decision Procedures
The procedure in Sect. 3.2.2 is not the only way to automatically prove the

equivalence of programs (a) and (b), of course. In this case, substitution is
sufficient: by simply substituting out2 a by out1 a ∗ in, out1 a by out0 a ∗ in,
and out0 a by in in ϕa, we can quickly (and automatically) prove (3.4), as we
obtain syntactically equal expressions. However, there are many cases where
such substitution is not efficient, as it can increase the size of the formula
exponentially. It is also possible that substitution alone may be insufficient to
prove equivalence. Consider, for example, the two functions power3 con and
power3 con new:

int power3 con
(int in, int con) {

int i, out a;
out a = in;
for (i = 0; i < 2; i++)
out a = con?out a * in

:out a;
return out a;

}

int power3 con new
(int in, int con) {

int out b;

out b = con?(in*in)*in
:in;

return out b;
}

(a) (b)

After substitution, we obtain two expressions,

out a = con? ((con? in ∗ in : in) ∗ in) : (con? in ∗ in : in) (3.6)

and
out b = con? (in ∗ in) ∗ in : in , (3.7)

corresponding to the two functions. Not only are these two expressions not
syntactically equivalent, but also the first expression grows exponentially with
the number of iterations.

Another possible way to prove equivalence is to rely on the fact that
the loops in the above programs are finite, and that the variables, as in any
C program, are of finite type (e.g., integers are typically represented using
32-bit bit vectors – see Chap. 6). Therefore, the set of states reachable by
the two programs can be represented and searched. This method can almost
never compete, however, with decision procedures for equality logic and un-
interpreted functions in terms of efficiency. There is a tradeoff, then, between
efficiency and completeness.
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see two possible reductions, Ackermann’s reduction and Bryant’s reduc-
tion, both of which enforce functional consistency. The former is somewhat
more intuitive to understand, but also imposes certain restrictions on the deci-
sion procedures that can be used to solve it, unlike the latter. The implications
of the differences between the two methods are explained in Sect. 4.6.

In the discussion that follows, for the sake of simplicity, we make several
assumptions regarding the input formula: it has a single uninterpreted func-
tion, with a single argument, and no two instances of this function have the
same argument. The generalization of the reductions is rather straightforward,
as the examples later on demonstrate.

3.3.1 Ackermann’s Reduction

Ackermann’s reduction (Algorithm 3.3.1) adds explicit constraints to the for-
mula in order to enforce the functional consistency requirement stated above.
The algorithm reads an EUF formula ϕUF that we wish to validate, and trans-
forms it to an equality logic formula ϕE of the form

ϕE := FCE =⇒ flatE , (3.8)

where FCE is a conjunction of functional-consistency constraints, and flatE

is a flattening of ϕUF, i.e., a formula in which each unique function instance
is replaced with a corresponding new variable.

Example 3.4. Consider the formula

(x1 �= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) �= F (x3)) , (3.9)

which we wish to reduce to equality logic using Algorithm 3.3.1.
After assigning indices to the instances of F (for this example, we assume

that this is done from left to right), we compute flatE and FCE accordingly:

flatE := (x1 �= x2) ∨ (f1 = f2) ∨ (f1 �= f3) , (3.10)

FCE := (x1 = x2 =⇒ f1 = f2) ∧
(x1 = x3 =⇒ f1 = f3) ∧
(x2 = x3 =⇒ f2 = f3) .

(3.11)

Equation (3.9) is valid if and only if the resulting equality formula is valid:

ϕE := FCE =⇒ flatE . (3.12)

such as C or JAVA. Functional consistency is guaranteed in that case only if we
consider all the data that the function may read (including global variables, static
variables, and data read from the environment) as argument of the function, and
provided that the program is single-threaded.
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�

�

�

�

Algorithm 3.3.1: Ackermann’s-reduction

Input: An EUF formula ϕUF with m instances of an uninterpreted
function F

Output: An equality logic formula ϕE such that ϕE is valid if and only
if ϕUF is valid

�

�

�

�
m

1. Assign indices to the uninterpreted-function instances from subexpressions �

�

�

�
Fi

outwards. Denote by Fi the instance of F that is given the index i, and
by arg(Fi) its single argument.

�

�

�

�

arg(Fi)
2. Let flatE

.
= T (ϕUF), where T is a function that takes an EUF formula �

�

�

�
flatE

�

�

�

�
T

(or term) as input and transforms it to an equality formula (or term,
respectively) by replacing each uninterpreted-function instance Fi with a
new term-variable fi (in the case of nested functions, only the variable
corresponding to the most external instance remains).

3. Let FCE denote the following conjunction of functional consistency con-
�

�

�

�
FCE

straints:

FCE :=

m−1∧

i=1

m∧

j=i+1

(T (arg(Fi)) = T (arg(Fj))) =⇒ fi = fj .

4. Let
ϕE := FCE =⇒ flatE .

Return ϕE.

In the next example, we go back to our running example for this chapter,
and transform it to equality logic.

Example 3.5. Recall our main example. We left it in Fig. 3.3 after adding
the uninterpreted-function symbol G. Now, using Ackermann’s reduction, we
can reduce it into an equality logic formula. This example also demonstrates
how to generalize the reduction to functions with several arguments: only if all
arguments of a pair of function instances are the same (pairwise), the return
value of the function is forced to be the same.

Our example has four instances of the uninterpreted function G,

G(out0 a, in), G(out1 a, in), G(in, in), and G(G(in, in), in) ,

which we number in this order. On the basis of (3.5), we compute flatE,
replacing each uninterpreted-function symbol with the corresponding variable:

flatE :=

⎛
⎝
⎛
⎝

out0 a = in ∧
out1 a = g1 ∧
out2 a = g2

⎞
⎠ ∧ out0 b = g4

⎞
⎠ =⇒ out2 a = out0 b .

(3.13)
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Aside: Checking the Satisfiability of ϕUF

Ackermann’s reduction was defined above for checking the validity of ϕUF.
It tells us that we need to check for the validity of ϕE := FCE =⇒ flatE

or, equivalently, check that ¬ϕE := FCE ∧ ¬flatE is unsatisfiable. This is
important in our case, because all the algorithms that we shall see later check
for satisfiability of formulas, not for their validity. Thus, as a first step we
need to negate ϕE.

What if we want to check for the satisfiability of ϕUF? The short answer
is that we need to check for the satisfiability of

ϕE := FCE ∧ flatE .

This is interesting. Normally, if we check for the satisfiability or validity of a
formula, this corresponds to checking for the satisfiability of the formula or
of its negation, respectively. Thus, we could expect that checking the satis-
fiability of ϕUF is equivalent to checking satisfiability of (FCE =⇒ flatE).
However, this is not the same as the above equation. So what has happened
here? The reason for the difference is that we check the satisfiability of ϕUF

before the reduction. This means that we can use Ackermann’s reduction to
check the validity of ¬ϕUF. The functional-consistency constraints FCE re-
main unchanged whether we check ϕUF or its negation ¬ϕUF. Thus, we need
to check the validity of FCE =⇒ ¬flatE, which is the same as checking the
satisfiability of FCE ∧ flatE, as stated above.

The functional-consistency constraints are given by

FCE := ((out0 a = out1 a ∧ in = in) =⇒ g1 = g2) ∧
((out0 a = in ∧ in = in) =⇒ g1 = g3) ∧
((out0 a = g3 ∧ in = in) =⇒ g1 = g4) ∧
((out1 a = in ∧ in = in) =⇒ g2 = g3) ∧
((out1 a = g3 ∧ in = in) =⇒ g2 = g4) ∧
((in = g3 ∧ in = in) =⇒ g3 = g4) .

(3.14)

The resulting equality formula is FCE =⇒ flatE, which we need to validate.
The reader may observe that most of these constraints are in fact redun-

dant. The validity of the formula depends on G(out0 a, in) being equal to
G(in, in), and G(out1 a, in) being equal to G(G(in, in), in). Hence, only the
second and fifth constraints in (3.14) are necessary. In practice, such observa-
tions are important because the quadratic growth in the number of functional-
consistency constraints may become a bottleneck. When comparing two sys-
tems, as in this case, it is frequently possible to detect in polynomial time
large sets of constraints that can be removed without affecting the validity of
the formula. More details of this technique can be found in [156].

Finally, we consider the case in which there is more than one function
symbol.
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Example 3.6. Consider now the following formula, which we wish to validate:

x1 = x2 =⇒ F (F (

g1︷ ︸︸ ︷
G(x1))︸ ︷︷ ︸

f1︸ ︷︷ ︸
f2

) = F (F (

g2︷ ︸︸ ︷
G(x2))︸ ︷︷ ︸

f3

)

︸ ︷︷ ︸
f4

. (3.15)

We index the function instances from the inside out (from subexpressions
outwards) and compute the following:

flatE := x1 = x2 =⇒ f2 = f4 (3.16)

FCE := x1 = x2 =⇒ g1 = g2 ∧
g1 = f1 =⇒ f1 = f2 ∧
g1 = g2 =⇒ f1 = f3 ∧
g1 = f3 =⇒ f1 = f4 ∧
f1 = g2 =⇒ f2 = f3 ∧
f1 = f3 =⇒ f2 = f4 ∧
g2 = f3 =⇒ f3 = f4 .

(3.17)

Then, again,
ϕE := FCE =⇒ flatE . (3.18)

From these examples, it is clear how to generalize Algorithm 3.3.1 to multi-
ple uninterpreted functions. We leave this and other extensions as an exercise
(Problem 3.3).

3.3.2 Bryant’s Reduction

Bryant’s reduction (Algorithm 3.3.2) has the same goal as Ackermann’s re-
duction: to transform EUF formulas to equality logic formulas, such that both
are equivalent. To check the satisfiability of ϕUF rather than the validity, we
return FCE ∧ flatE in the last step.

The semantics of the case expression used in step 3 is such that its value
is determined by the first condition that is evaluated to true. Its translation
to an equality logic formula, assuming that the argument of Fi is a variable
xi for all i, is given by

i∨

j=1

(F ⋆
i = fj ∧ (xj = xi) ∧

j−1∧

k=1

(xk �= xi)) . (3.22)

Example 3.7. Given the case expression

F ⋆
3 =

⎛
⎝

case x1 = x3 : f1

x2 = x3 : f2

true : f3

⎞
⎠ , (3.23)
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�

�

�

�

Algorithm 3.3.2: Bryant’s-reduction

Input: An EUF formula ϕUF with m instances of an uninterpreted
function F

Output: An equality logic formula ϕE such that ϕE is valid if and only
if ϕUF is valid

1. Assign indices to the uninterpreted-function instances from subexpressions
outwards. Denote by Fi the instance of F that is given the index i, and
by arg(Fi) its single argument.

2. Let flatE = T ⋆(ϕUF), where T ⋆ is a function that takes an EUF formula
�

�

�

�
flatE

�

�

�

�
T ⋆

(or term) as input and transforms it to an equality formula (or term,
respectively) by replacing each uninterpreted-function instance Fi with a
new term-variable F ⋆

i (in the case of nested functions, only the variable�

�

�

�
F ⋆

i corresponding to the most external instance remains).
3. For i ∈ {1, . . . , m}, let fi be a new variable, and let F ⋆

i be defined as
follows:

F ⋆
i :=

⎛
⎜⎜⎜⎝

case T ⋆(arg(F ⋆
1 )) = T ⋆(arg(F ⋆

i )) : f1

...
...

T ⋆(arg(F ⋆
i−1)) = T ⋆(arg(F ⋆

i )) : fi−1

true : fi

⎞
⎟⎟⎟⎠ . (3.19)

Finally, let

FCE :=

m∧

i=1

F ⋆
i . (3.20)

4. Let
ϕE := FCE =⇒ flatE . (3.21)

Return ϕE.

its equivalent equality logic formula is given by

(F ⋆
3 = f1 ∧ x1 = x3) ∨

(F ⋆
3 = f2 ∧ x2 = x3 ∧ x1 �= x3) ∨

(F ⋆
3 = f3 ∧ x1 �= x3 ∧ x2 �= x3) .

(3.24)

The differences between the two reduction schemes are:

1. Step 1 in Bryant’s reduction requires a certain order when indices are as-
signed to function instances. Such an order is not required in Ackermann’s
reduction.

2. Step 2 in Bryant’s reduction replaces function instances with F ⋆ variables
rather than with f variables. The F ⋆ variables should be thought of sim-
ply as macros, or placeholders, which means that they are used only for
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simplifying the writing of the formula. We can do without them if we re-
move FCE from the formula altogether and substitute them in flatE with
their definitions. The reason that we maintain them is to make the presen-
tation more readable and to maintain a structure similar to Ackermann’s
reduction.

3. The definition of FCE, which enforces functional consistency, relies on
case expressions rather than on a pairwise enforcing of consistency.

The generalization of Algorithm 3.3.2 to functions with multiple arguments
is straightforward, as we shall soon see in the examples.

Example 3.8. Let us return to our main example of this chapter, the problem
of proving the equivalence of programs (a) and (b) in Fig. 3.1. We continue
from Fig. 3.3, where the logical formulas corresponding to these programs are
given, with the use of the uninterpreted function G. On the basis of (3.5), we
compute flatE, replacing each uninterpreted-function symbol with the corre-
sponding variable:

flatE :=

⎛
⎝
⎛
⎝

out0 a = in ∧
out1 a = G⋆

1 ∧
out2 a = G⋆

2

⎞
⎠ ∧ (out0 b = G⋆

4)

⎞
⎠ =⇒ out2 a = out0 b .

(3.25)
Not surprisingly, this looks very similar to (3.13). The only difference is that
instead of the gi variables, we now have the G⋆

i macros, for 1 ≤ i ≤ 4.
Recall their origin: the function instances are G(out0 a, in), G(out1 a, in),
G(in, in) and G(G(in, in), in), which we number in this order. The corre-
sponding functional-consistency constraints are

FCE :=

G⋆
1 = g1 ∧

G⋆
2 =

(
case out0 a = out1 a ∧ in = in : g1

true : g2

)
∧

G⋆
3 =

⎛
⎝

case out0 a = in ∧ in = in : g1

out1 a = in ∧ in = in : g2

true : g3

⎞
⎠ ∧

G⋆
4 =

⎛
⎜⎜⎝

case out0 a = G⋆
3 ∧ in = in : g1

out1 a = G⋆
3 ∧ in = in : g2

in = G⋆
3 ∧ in = in : g3

true : g4

⎞
⎟⎟⎠

(3.26)

and since we are checking for validity, the formula to be checked is

ϕE := FCE =⇒ flatE . (3.27)

Example 3.9. If there are multiple uninterpreted-function symbols, the re-
duction is applied to each of them separately, as demonstrated in the following
example, in which we consider the formula of Example 3.6 again:
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x1 = x2 =⇒ F (F (

G⋆
1︷ ︸︸ ︷

G(x1))︸ ︷︷ ︸
F ⋆

1

)

︸ ︷︷ ︸
F ⋆

2

= F (F (

G⋆
2︷ ︸︸ ︷

G(x2))︸ ︷︷ ︸
F ⋆

3

)

︸ ︷︷ ︸
F ⋆

4

. (3.28)

As before, we number the function instances of each of the uninterpreted-
function symbols F and G from the inside out (this order is required in
Bryant’s reduction). Applying Bryant’s reduction, we obtain

flatE := (x1 = x2 =⇒ F ⋆
2 = F ⋆

4 ) , (3.29)

FCE := F ⋆
1 = f1 ∧

F ⋆
2 =

(
case G⋆

1 = F ⋆
1 : f1

true : f2

)
∧

F ⋆
3 =

⎛
⎝

case G⋆
1 = G⋆

2 : f1

F ⋆
1 = G⋆

2 : f2

true : f3

⎞
⎠ ∧

F ⋆
4 =

⎛
⎜⎜⎝

case G⋆
1 = F ⋆

3 : f1

F ⋆
1 = F ⋆

3 : f2

G⋆
2 = F ⋆

3 : f3

true : f4

⎞
⎟⎟⎠ ∧

G⋆
1 = g1 ∧

G⋆
2 =

(
case x1 = x2 : g1

true : g2

)
,

(3.30)

and
ϕE := FCE =⇒ flatE . (3.31)

Note that in any satisfying assignment that satisfies x1 = x2 (the premise
of (3.28)), F ⋆

1 and F ⋆
3 are equal to f1, while F ⋆

2 and F ⋆
4 are equal to f2.

The difference between Ackermann’s and Bryant’s reductions is not just
syntactic, as was hinted earlier. It has implications for the decision procedure
that one can use when solving the resulting formula. We discuss this point
further in Sect. 4.6.

3.4 Functional Consistency Is Not Enough

Functional consistency is not always sufficient for proving correct statements.
This is not surprising, as we clearly lose information by replacing concrete,
interpreted functions with uninterpreted functions. Consider, for example, the
plus (‘+’) function. Now suppose that we are given a formula containing the
two function instances x1 + y1 and x2 + y2, and, owing to other parts of
the formula, it holds that x1 = y2 and y1 = x2. Further, suppose that we
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replace “+” with a binary uninterpreted function F . Since in Algorithms 3.3.1
and 3.3.2 we only compare arguments pairwise in the order in which they
appear, the proof cannot rely on the fact that these two function instances are
evaluated to give the same result. In other words, the functional-consistency
constraints alone do not capture the commutativity of the “+” function, which
may be necessary for the proof. This demonstrates the fact that by using
uninterpreted functions we lose completeness (see Definition 1.6).

One may add, of course, additional constraints that capture more informa-
tion about the original function – commutativity, in the case of the example
above. For example, considering Ackermann’s reduction for the above exam-
ple, let f1, f2 be the variables that encode the two function instances, respec-
tively. We can then replace the functional-consistency constraint for this pair
with the stronger constraint

((x1 = x2 ∧ y1 = y2) ∨ (x1 = y2 ∧ y1 = x2)) =⇒ f1 = f2 . (3.32)

Such constraints can be tailored as needed, to reflect properties of the
uninterpreted functions. In other words, by adding these constraints we make
them partially interpreted functions, as we model some of their properties.
For the multiplication function, for example, we can add a constraint that if
one of the arguments is equal to 0, then so is the result. Generally, the more
abstract the formula is, the easier it is, computationally, to solve it. On the
other hand, the more abstract the formula is, the fewer correct facts about
its original version can be proven. The right abstraction level for a given
formula can be found by a trial-and-error process. Such a process can even
be automated with an abstraction–refinement loop,6 as can be seen in
Algorithm 3.4.1 (this is not so much an algorithm as a framework that needs
to be concretized according to the exact problem at hand). In step 2, the
algorithm returns “Valid” if the abstract formula is valid. The correctness of
this step is implied by (3.3). If, on the other hand, the formula is not valid
and the abstract formula ϕ′ is identical to the original one, the algorithm
returns “Valid” in the next step. The optional step that follows (step 4) is not
necessary for the soundness of the algorithm, but only for its performance.
This step is worth executing only if it is easier than solving ϕ itself.

Plenty of room for creativity is left when one is implementing such an
algorithm: which constraints to add in step 5? When to resort to the origi-
nal interpreted functions? How to implement step 4? An instance of such a
procedure is described, for the case of bit-vector arithmetic, in Sect. 6.3.

6 Abstraction–refinement loops [111] are implemented in many model checkers [46]
(tools for verifying temporal properties of transition systems) and other auto-
mated formal-reasoning tools. The types of abstractions used can be very different
than from those presented here, but the basic elements of the iterative process
are the same.
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Aside: Rewriting systems
Observations such as “a multiplication by 0 is equal to 0” can be formulated
with rewriting rules. Such rules are the basis of rewriting systems [64, 99],
which are used in several branches of mathematics and mathematical logic.
Rewriting systems, in their basic form, define a set of terms and (possibly non-
deterministic) rules for transforming them. Theorem provers that are based
on rewriting systems (such as ACL2 [104]) use hundreds of such rules. Many
of these rules can be used in the context of the partially interpreted functions
that were studied in Sect. 3.4, as demonstrated for the “multiply by 0” rule.

Rewriting systems, as a formalism, have the same power as a Turing ma-
chine. They are frequently used for defining and implementing inference sys-
tems, for simplifying formulas by replacing subexpressions with equal but
simpler subexpressions, for computing results of arithmetic expressions, and
so forth. Such implementations require the design of a strategy for applying
the rules, and a mechanism based on pattern matching for detecting the set
of applicable rules at each step.

�

�

�

�

Algorithm 3.4.1: Abstraction-refinement

Input: A formula ϕ in a logic L, such that there is a decision pro-
cedure for L with uninterpreted functions

Output: “Valid” if ϕ is valid, “Not valid” otherwise

1. ϕ′ := T (ϕ).
2. If ϕ′ is valid then return “Valid”.
3. If ϕ′ = ϕ then return “Not valid”.
4. (Optional) Let α′ be a counterexample to the validity of ϕ′. If it is possible

to derive a counterexample α to the validity of ϕ (possibly by extending
α′ to those variables in ϕ that are not in ϕ′), return “Not valid”.

5. Refine ϕ′ by adding more constraints as discussed in sect. 3.4, or by re-
placing uninterpreted functions with their original interpreted versions
(reaching, in the worst case, the original formula ϕ).

6. Return to step 2.

3.5 Two Examples of the Use of Uninterpreted Functions

Uninterpreted functions can be used for property-based verification, that is,
proving that a certain property holds for a given model. Occasionally it hap-
pens that properties are correct regardless of the semantics of a certain func-
tion, and functional consistency is all that is needed for the proof. In such
cases, replacing the function with an uninterpreted function can simplify the
proof.



3.5 Two Examples of the Use of Uninterpreted Functions 75

The more common use of uninterpreted functions, however, is for proving
equivalence between systems. In the chip design industry, proving equivalence
between two versions of a hardware circuit is a standard procedure. Another
application is translation validation, a process of proving the semantic
equivalence of the input and output of a compiler. Indeed, we end this chapter
with a detailed description of these two problem domains.

In both applications, it is expected that every function on one side of
the equation can be mapped to a similar function on the other side. In such
cases, replacing all functions with an uninterpreted version and using one of
the reductions that we saw in Sects. 3.3.1 and 3.3.2 is typically sufficient for
proving equivalence.

3.5.1 Proving Equivalence of Circuits

Pipelining is a technique for improving the performance of a circuit such as a
microprocessor. The computation is split into phases, called pipeline stages.
This allows one to speed up the computation by making use of concurrent
computation, as is done in an assembly line in a factory.

The clock frequency of a circuit is limited by the length of the longest
path between latches (i.e., memory components), which is, in the case of a
pipelined circuit, simply the length of the longest stage. The delay of each
path is affected by the gates along that path and the delay that each one of
them imposes.

Figure 3.4(a) shows a pipelined circuit. The input, denoted by in, is pro-
cessed in the first stage. We model the combinational gates within the stages
with uninterpreted functions, denoted by C,F,G,H,K, and D. For the sake
of simplicity, we assume that they each impose the same delay. The circuit
applies function F to the inputs in, and stores the result in latch L1. This
can be formalized as follows:

L1 = F (in) . (3.33)

The second stage computes values for L2, L3, and L4:

L2 = L1 ,
L3 = K(G(L1)) ,
L4 = H(L1) .

(3.34)

The third stage contains a multiplexer. A multiplexer is a circuit that selects
between two inputs according to the value of a Boolean signal. In this case, this
selection signal is computed by a function C. The output of the multiplexer
is stored in latch L5:

L5 = C(L2) ? L3 : D(L4) . (3.35)
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(a) Original circuit (b) After transformation

Fig. 3.4. Showing the correctness of a transformation of a pipelined circuit using
uninterpreted functions. After the transformation, the circuit has a shorter longest
path between stages, and thus can be operated at a higher clock frequency

Observe that the second stage contains two functions, G and K, where the
output of G is used as an input for K. Suppose that this is the longest path
within the circuit. We now aim to transform the circuit in order to make it
work faster. This can be done in this case by moving the gates represented by
K down into the third stage.

Observe also that only one of the values in L3 and L4 is used, as the
multiplexer selects one of them depending on C. We can therefore remove one
of the latches by introducing a second multiplexer in the second stage. The
circuit after these changes is shown in Fig. 3.4(b). It can be formalized as
follows:

L′
1 = F (in) ,

L′
2 = C(L′

1) ,
L′

3 = C(L′
1) ? G(L′

1) : H(L′
1) ,

L′
5 = L′

2 ? K(L′
3) : D(L′

3) .

(3.36)

The final result of the computation is stored in L5 in the original circuit,
and in L′

5 in the modified circuit. We can show that the transformations are
correct by proving that for all inputs, the conjunction of the above equalities
implies
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L5 = L′
5 . (3.37)

This proof can be automated by using a decision procedure for equalities and
uninterpreted functions.

3.5.2 Verifying a Compilation Process with Translation Validation

The next example illustrates a translation validation process that relies on un-
interpreted functions and Ackermann’s reduction. Unlike the hardware exam-
ple, we start from interpreted functions and replace them with uninterpreted
functions.

Suppose that a source program contains the statement

z = (x1 + y1) ∗ (x2 + y2) , (3.38)

which the compiler that we wish to check compiles into the following sequence
of three assignments:

u1 = x1 + y1; u2 = x2 + y2; z = u1 ∗ u2 . (3.39)

Note the two new auxiliary variables u1 and u2 that have been added by the
compiler. To verify this translation, we construct the verification condition

u1 = x1+y1∧u2 = x2+y2∧z = u1∗u2 =⇒ z = (x1+y1)∗(x2+y2) , (3.40)

whose validity we wish to check.7

We now abstract the concrete functions appearing in the formula, namely
addition and multiplication, by the abstract uninterpreted-function symbols
F and G, respectively. The abstracted version of the implication above is

(u1 = F (x1, y1) ∧ u2 = F (x2, y2) ∧ z = G(u1, u2))
=⇒ z = G(F (x1, y1), F (x2, y2)) .

(3.41)

Clearly, if the abstracted version is valid, then so is the original concrete one
(see (3.3)).

Next, we apply Ackermann’s reduction (Algorithm 3.3.1), replacing each
function by a new variable, but adding, for each pair of terms with the same
function symbol, an extra antecedent that guarantees the functionality of these
terms. Namely, if the two arguments of the original terms are equal, then the
terms should be equal.

7 This verification condition is an implication rather than an equivalence because
we are attempting to prove that the values allowed in the target code are also
allowed in the source code, but not necessarily the other way. This asymmetry
can be relevant when the source code is interpreted as a specification that allows
multiple behaviors, only one of which is actually implemented. For the purpose of
demonstrating the use of uninterpreted functions, whether we use an implication
or an equivalence is immaterial.
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Applying Ackermann’s reduction to the abstracted formula, we obtain the
following equality formula:

ϕE :=

⎧
⎪⎪⎩ (x1 = x2 ∧ y1 = y2 =⇒ f1 = f2) ∧

(u1 = f1 ∧ u2 = f2 =⇒ g1 = g2)

⎫
⎪⎪⎭ =⇒

((u1 = f1 ∧ u2 = f2 ∧ z = g1) =⇒ z = g2) ,
(3.42)

which we can rewrite as

ϕE :=

⎧
⎪⎪⎪⎪⎪⎩

(x1 = x2 ∧ y1 = y2 =⇒ f1 = f2) ∧
(u1 = f1 ∧ u2 = f2 =⇒ g1 = g2) ∧

u1 = f1 ∧ u2 = f2 ∧ z = g1

⎫
⎪⎪⎪⎪⎪⎭ =⇒ z = g2 . (3.43)

It is left to prove, then, the validity of this equality logic formula.
The success of such a process depends on how different the two sides

are. Suppose that we are attempting to perform translation validation for
a compiler that does not perform heavy arithmetic optimizations. In such a
case, the scheme above will probably succeed. If, on the other hand, we are
comparing two arbitrary source codes, even if they are equivalent, it is unlikely
that the same scheme will be sufficient. It is possible, for example, that one
side uses the function 2 ∗ x while the other uses x + x. Since addition and
multiplication are represented by two different uninterpreted functions, they
are not associated with each other in any way according to Algorithm 3.3.1,
and hence the proof of equivalence is not able to rely on the fact that the two
expressions are semantically equal.

3.6 Problems

3.6.1 Warm-up Exercises

Problem 3.1 (practicing Ackermann’s and Bryant’s reductions).
Given the formula

F (F (x1)) �= F (x1) ∧
F (F (x1)) �= F (x2) ∧
x2 = F (x1) ,

(3.44)

reduce its validity problem to a validity problem of an equality logic formula
through Ackermann’s reduction and Bryant’s reduction.

3.6.2 Problems

Problem 3.2 (eliminating constants). Prove that given an equality logic
formula, Algorithm 3.1.1 returns an equisatisfiable formula without con-
stants.8

8 Further discussion of the constants-elimination problem appears in the next chap-
ter, as part of Problem 4.4.
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Problem 3.3 (Ackermann’s reduction). Extend Algorithm 3.3.1 to mul-
tiple function symbols and to functions with multiple arguments.

Problem 3.4 (Bryant’s reduction). Suppose that in Algorithm 3.3.2, the
definition of Fi is replaced by

F ⋆
i =

⎛
⎜⎜⎜⎝

case T ⋆(arg(F ⋆
1 )) = T ⋆(arg(F ⋆

i )) : F ⋆
1

...
T ⋆(arg(F ⋆

i−1)) = T ⋆(arg(F ⋆
i )) : F ⋆

i−1

true : fi

⎞
⎟⎟⎟⎠ , (3.45)

the difference being that the terms on the right refer to the F ⋆
j variables,

1 ≤ j < i, rather than to the fj variables. Does this change the value of F ⋆
i ?

Prove a negative answer or give an example.

Problem 3.5 (abstraction/refinement). Frequently, the functional-consis-
tency constraints become the bottleneck in the verification procedure, as their
number is quadratic in the number of function instances. In such cases, even
solving the first iteration of Algorithm 3.4.1 is too hard.

Show an abstraction/refinement algorithm that begins with flatE and
gradually adds functional-consistency constraints.

Hint : note that given an assignment α′ that satisfies a formula with only
some of the functional-consistency constraints, checking whether α′ respects
functional consistency is not trivial. This is because α′ does not necessarily
refer to all variables (if the formula contains nested functions, some may disap-
pear in the process of abstraction). Hence α′ cannot be tested directly against
a version of the formula that contains all functional-consistency constraints.

3.7 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

ϕE Equality formula 60

Cc A variable used for substituting a constant c in the
process of removing constants from equality formulas

60

ϕUF Equality formula + uninterpreted functions (before
reduction to equality logic)

62

continued on next page
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continued from previous page

First used
Symbol Refers to . . . on page . . .

T A function that transforms an input formula or term
by replacing each uninterpreted function Fi with a
new variable fi

67

FCE Functional-consistency constraints 67

T ⋆ A function similar to T , that replaces each uninter-
preted function Fi with F ⋆

i

70

flatE Equal to T (ϕUF) in Ackermann’s reduction, and to
T ⋆(ϕUF) in Bryant’s reduction

67, 70

F ⋆
i In Bryant’s reduction, a macro variable representing

the case expression associated with the function in-
stance Fi() that was substituted by Fi

70
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Decision Procedures for Equality Logic and
Uninterpreted Functions

In Chap. 3, we saw how useful the theory of equality logic with uninterpreted-
function (EUF) is. In this chapter, we concentrate on decision procedures for
EUF and on algorithms for simplifying EUF formulas. Recall that we are
solving the satisfiability problem for formulas in negation normal form (NNF
– see Definition 1.10) without constants, as those can be removed with, for
example, Algorithm 3.1.1. With the exception of Sect. 4.1, we handle equality
logic without uninterpreted functions, assuming that these are eliminated by
one of the reduction methods introduced in Chap. 3.

4.1 Deciding a Conjunction of Equalities and
Uninterpreted Functions with Congruence Closure

We begin by showing a method for solving a conjunction of equalities and
uninterpreted functions. As is the case for most of the theories that we consider
in this book, the satisfiability problem for conjunctions of predicates can be
solved in polynomial time.

Note that a decision procedure for a conjunction of equality predicates is
not sufficient to support uninterpreted functions as well, as both Ackermann’s
and Bryant’s reductions (Chap. 3) introduce disjunctions into the formula.

As an alternative, Shostak proposed in 1978 a method for handling unin-
terpreted functions directly. Starting from a conjunction ϕUF of equalities and
disequalities over variables and uninterpreted functions, he proposed a two-
stage algorithm (see Algorithm 4.1.1), which is based on computing equiv-
alence classes. The version of the algorithm that is presented here assumes
that the uninterpreted functions have a single argument. The extension to
the general case is left as an exercise (Problem 4.3).
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�
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�

�

Algorithm 4.1.1: Congruence-Closure

Input: A conjunction ϕUF of equality predicates over variables
and uninterpreted functions

Output: “Satisfiable” if ϕUF is satisfiable, and “Unsatisfiable”
otherwise

1. Build congruence-closed equivalence classes.
(a) Initially, put two terms t1, t2 (either variables or uninterpreted-

function instances) in their own equivalence class if (t1 = t2) is a
predicate in ϕUF. All other variables form singleton equivalence
classes.

(b) Given two equivalence classes with a shared term, merge them.
Repeat until there are no more classes to be merged.

(c) Compute the congruence closure: given two terms ti, tj that are
in the same class and that F (ti) and F (tj) are terms in ϕUF for
some uninterpreted function F , merge the classes of F (ti) and
F (tj). Repeat until there are no more such instances.

2. If there exists a disequality ti �= tj in ϕUF such that ti and tj are in
the same equivalence class, return “Unsatisfiable”. Otherwise return
“Satisfiable”.

Example 4.1. Consider the conjunction

ϕUF := x1 = x2 ∧ x2 = x3 ∧ x4 = x5 ∧ x5 �= x1 ∧ F (x1) �= F (x3) . (4.1)

Initially, the equivalence classes are

{x1, x2}, {x2, x3}, {x4, x5}, {F (x1)}, {F (x3)} . (4.2)

Step 1(b) of Algorithm 4.1.1 merges the first two classes:

{x1, x2, x3}, {x4, x5}, {F (x1)}, {F (x3)} . (4.3)

The next step also merges the classes containing F (x1) and F (x3), because
x1 and x2 are in the same class:

{x1, x2, x3}, {x4, x5}, {F (x1), F (x3)} . (4.4)

In step 2, we note that F (x1) �= F (x3) is a predicate in ϕUF, but that F (x1)
and F (x3) are in the same class. Hence, ϕUF is unsatisfiable.

Variants of Algorithm 4.1.1 can be implemented efficiently with a union–
find data structure, which results in a time complexity of O(n log n) (see, for
example, [141]).
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In the original presentation of his method, Shostak implemented support
for disjunctions by means of case-splitting, which is the bottleneck in this
method. For example, given the formula

ϕUF := x1 = x2 ∨ (x2 = x3 ∧ x4 = x5 ∧ x5 �= x1 ∧ F (x1) �= F (x3)) , (4.5)

he considered separately the two cases corresponding to the left and right
parts of the disjunction. This can work well as long as there are not too many
cases to consider.

The more interesting question is how to solve the general case efficiently,
where the given formula has an arbitrary Boolean structure. This problem
arises with all the theories that we study in this book. There are two main
approaches. A highly efficient method is to combine a SAT solver with an
algorithm such as Algorithm 4.1.1, where the former searches for a satisfying
assignment to the Boolean skeleton of the formula (an abstraction of the
formula where each unique predicate is replaced with a new Boolean variable),
and the latter is used to check whether this assignment corresponds to a
satisfying assignment to the equality predicates – we dedicate Chap. 11 to
this technique. A second approach is based on a full reduction to propositional
logic, and is the subject of the rest of this chapter.

4.2 Basic Concepts

In this section, we present several basic terms that are used later in the chap-
ter. We assume from here on that uninterpreted functions have already been
eliminated, i.e., that we are solving the satisfiability problem for equality logic
without uninterpreted functions. Recall that we are also assuming that the
formula is given to us in NNF and without constants. Recall further that an
atom in such formulas is an equality predicate, and a literal is either an atom
or its negation (see Definition 1.11). Given an equality logic formula ϕE, we
denote the set of atoms of ϕE by At(ϕE).

�

�

�

�

At(ϕE)

Definition 4.2 (equality and disequality literals sets). The equality lit-
erals set E= of an equality logic formula ϕE is the set of positive literals in

�

�

�

�
E=

ϕE. The disequality literals set E�= of an equality logic formula ϕE is the set �

�

�

�

E �=of disequality literals in ϕE.

It is possible, of course, that an equality may appear in the equality literals
set and its negation in the disequality literals set.

Example 4.3. Consider the negation normal form of ¬ϕE in (3.43):

¬ϕE :=

⎧
⎪⎪⎪⎪⎪⎩

(x1 �= x2 ∨ y1 �= y2 ∨ f1 = f2) ∧
(u1 �= f1 ∨ u2 �= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1)

⎫
⎪⎪⎪⎪⎪⎭ ∧ z �= g2 . (4.6)
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We therefore have

E= := {(f1 = f2), (g1 = g2), (u1 = f1), (u2 = f2), (z = g1)}
E�= := {(x1 �= x2), (y1 �= y2), (u1 �= f1), (u2 �= f2), (z �= g2)} .

(4.7)

Definition 4.4 (equality graph). Given an equality logic formula ϕE in
NNF, the equality graph that corresponds to ϕE, denoted by GE(ϕE), is an

�

�

�

�
GE

undirected graph (V,E=, E�=) where the nodes in V correspond to the variables
in ϕE, the edges in E= correspond to the predicates in the equality literals set of
ϕE and the edges in E �= correspond to the predicates in the disequality literals
set of ϕE.

Note that we overload the symbols E= and E �= so that each represents
both the literals sets and the edges that represent them in the equality graph.
Similarly, when we say that an assignment “satisfies an edge”, we mean that
it satisfies the literal represented by that edge.

We may write simply GE for an equality graph when the formula it cor-
responds to is clear from the context. Graphically, equality literals are repre-
sented as dashed edges and disequality literals as solid edges, as illustrated in
Fig. 4.1.

x2

x5

x1

x4 x3

Fig. 4.1. An equality graph. Dashed edges represent E= literals (equalities), and
solid edges represent E�= literals (disequalities)

It is important to note that the equality graph GE(ϕE) represents an ab-
straction of ϕE: more specifically, it represents all the equality logic formulas
that have the same literals sets as ϕE. Since it disregards the Boolean con-
nectives, it can represent both a satisfiable and an unsatisfiable formula. For
example, although x1 = x2 ∧ x1 �= x2 is unsatisfiable and x1 = x2 ∨ x1 �= x2

is satisfiable, both formulas are represented by the same equality graph.

Definition 4.5 (equality path). An equality path in an equality graph GE

is a path consisting of E= edges. We denote by x =∗ y the fact that there
�

�

�

�
x =∗ y

exists an equality path from x to y in GE, where x, y ∈ V .

Definition 4.6 (disequality path). A disequality path in an equality graph
GE is a path consisting of E= edges and a single E�= edge. We denote by
x �=∗ y the fact that there exists a disequality path from x to y in GE, where

�

�

�

�
x �=∗ y

x, y ∈ V .
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Similarly, we use the terms simple equality path and simple disequality path
when the path is required to be loop-free.

Consider Fig. 4.1 and observe, for example, that x2 =∗ x4 owing to the
path x2, x5, x4, and x2 �=

∗ x4 owing to the path x2, x5, x1, x4. In this case,
both paths are simple. Intuitively, if x =∗ y in GE(ϕE), then it might be
necessary to assign the two variables equal values in order to satisfy ϕE. We
say “might” because, once again, the equality graph obscures details about
ϕE, as it disregards the Boolean structure of ϕE. The only fact that we know
from x =∗ y is that there exist formulas whose equality graph is GE(ϕE) and
that in any assignment satisfying them, x = y. However, we do not know
whether ϕE is one of them. A disequality path x �=∗ y in GE(ϕE) implies the
opposite: it might be necessary to assign different values to x and y in order
to satisfy ϕE.

The case in which both x =∗ y and x �=∗ y hold in GE(ϕE) requires special
attention. We say that the graph, in this case, contains a contradictory cycle.

Definition 4.7 (contradictory cycle). In an equality graph, a contradic-
tory cycle is a cycle with exactly one disequality edge.

For every pair of nodes x, y in a contradictory cycle, it holds that x =∗ y and
x �=∗ y.

Contradictory cycles are of special interest to us because the conjunction of
the literals corresponding to their edges is unsatisfiable. Furthermore, since we
have assumed that there are no constants in the formula, these are the only
topologies that have this property. Consider, for example, a contradictory
cycle with nodes x1, . . . , xk in which (x1, xk) is the disequality edge. The
conjunction

x1 = x2 ∧ . . . ∧ xk−1 = xk ∧ xk �= x1 (4.8)

is clearly unsatisfiable.
All the decision procedures that we consider refer explicitly or implicitly

to contradictory cycles. For most algorithms we can further simplify this def-
inition by considering only simple contradictory cycles. A cycle is simple if it
is represented by a path in which none of the vertices is repeated, other than
the starting and ending vertices.

4.3 Simplifications of the Formula

Regardless of the algorithm that is used for deciding the satisfiability of a
given equality logic formula ϕE, it is almost always the case that ϕE can
be simplified a great deal before the algorithm is invoked. Algorithm 4.3.1
presents such a simplification.
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�

�

�

�

Algorithm 4.3.1: Simplify-Equality-Formula

Input: An equality formula ϕE

Output: An equality formula ϕE′ equisatisfiable with ϕE, with
length less than or equal to the length of ϕE

1. Let ϕE′ := ϕE.
2. Construct the equality graph GE(ϕE′).
3. Replace each pure literal in ϕE′ whose corresponding edge is not part

of a simple contradictory cycle with true.
4. Simplify ϕE′ with respect to the Boolean constants true and false

(e.g., replace true ∨ φ with true, and false ∧ φ with false).
5. If any rewriting has occurred in the previous two steps, go to step 2.
6. Return ϕE′.

The following example illustrates the steps of Algorithm 4.3.1.

Example 4.8. Consider (4.6). Figure 4.2 illustrates GE(ϕE), the equality
graph corresponding to ϕE.

g2

y1 y2

f1 f2 u2

x1 x2

u1

z

g1

Fig. 4.2. The equality graph corresponding to Example 4.8. The edges f1 = f2,
x1 
= x2 and y1 
= y2 are not part of any contradictory cycle, and hence their
respective predicates in the formula can be replaced with true

In this case, the edges f1 = f2, x1 �= x2 and y1 �= y2 are not part of any
simple contradictory cycle and can therefore be substituted by true. This
results in

ϕE′
:=

⎧
⎪⎪⎪⎪⎪⎩

(true ∨ true ∨ true) ∧
(u1 �= f1 ∨ u2 �= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z �= g2)

⎫
⎪⎪⎪⎪⎪⎭ , (4.9)

which, after simplification according to step 4, is equal to

ϕE′
:=

⎧
⎪⎪⎩ (u1 �= f1 ∨ u2 �= f2 ∨ g1 = g2) ∧

(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z �= g2)

⎫
⎪⎪⎭ . (4.10)

Reconstructing the equality graph after this simplification does not yield any
more simplifications, and the algorithm terminates.
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Now, consider a similar formula in which the predicates x1 �= x2 and
u1 �= f1 are swapped. This results in the formula

ϕE :=

⎧
⎪⎪⎪⎪⎪⎩

(u1 �= f1 ∨ y1 �= y2 ∨ f1 = f2) ∧
(x1 �= x2 ∨ u2 �= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z �= g2)

⎫
⎪⎪⎪⎪⎪⎭ . (4.11)

Although we start from exactly the same graph, the simplification algorithm
is now much more effective. After the first step we have

ϕE′
:=

⎧
⎪⎪⎪⎪⎪⎩

(u1 �= f1 ∨ true ∨ true) ∧
(true ∨ u2 �= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z �= g2)

⎫
⎪⎪⎪⎪⎪⎭ , (4.12)

which, after step 4, simplifies to

ϕE′
:=

⎧
⎩ (u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z �= g2)

⎫
⎭ . (4.13)

The graph corresponding to ϕE′ after this step appears in Fig. 4.3.

g2u1

z

f1 f2 u2 g1

Fig. 4.3. An equality graph corresponding to (4.13), showing the first iteration of
step 4

Clearly, no edges in ϕE′ belong to a contradictory cycle after this step,
which implies that we can replace all the remaining predicates by true. Hence,
in this case, simplification alone proves that the formula is satisfiable, without
invoking a decision procedure.

Although we leave the formal proof of the correctness of Algorithm 4.3.1
as an exercise (Problem 4.5), let us now consider what such a proof may
look like. Correctness can be shown by proving that steps 3 and 4 maintain
satisfiability (as these are the only steps in which the formula is changed). The
simplifications in step 4 trivially maintain satisfiability, so the main problem
is step 3.

Let ϕE

1 and ϕE

2 be the equality formulas before and after step 3, respectively.
We need to show that these formulas are equisatisfiable.

(⇒) If ϕE

1 is satisfiable, then so is ϕE

2 . This is implied by the monotonicity
of NNF formulas (see Theorem 1.14) and the fact that only pure literals are
replaced by true.
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(⇐) If ϕE

2 is satisfiable, then so is ϕE

1 . Only a proof sketch and an example
will be given here. The idea is to construct a satisfying assignment α1 for ϕE

1

while relying on the existence of a satisfying assignment α2 for ϕE

2 . Specif-
ically, α1 should satisfy exactly the same predicates as are satisfied by α2,
but also satisfy all those predicates that were replaced by true. The follow-
ing simple observation can be helpful in this construction: given a satisfying
assignment to an equality formula, shifting the values in the assignment uni-
formly maintains satisfaction (because the values of the equality predicates
remain the same). The same observation applies to an assignment of some
of the variables, as long as none of the predicates that refer to one of these
variables becomes false owing to the new assignment.

Consider, for example, (4.11) and (4.12), which correspond to ϕE

1 and ϕE

2 ,
respectively, in our argument. An example of a satisfying assignment to the
latter is

α2 := {u1 �→ 0, f1 �→ 0, f2 �→ 1, u2 �→ 1, z �→ 0, g1 �→ 0, g2 �→ 1} . (4.14)

First, α1 is set equal to α2. Second, we need to extend α1 with an assign-
ment of those variables not assigned by α2. The variables in this category are
x1, x2, y1, and y2, which can be trivially satisfied because they are not part
of any equality predicate. Hence, assigning a unique value to each of them is
sufficient. For example, we can now have

α1 := α1 ∪ {x1 �→ 2, x2 �→ 3, y1 �→ 4, y2 �→ 5} . (4.15)

Third, we need to consider predicates that are replaced by true in step 3 but
are not satisfied by α1. In our example, f1 = f2 is such a predicate. To solve
this problem, we simply shift the assignment to f2 and u2 so that the predicate
f1 = f2 is satisfied (a shift by minus 1 in this case). This clearly maintains
the satisfaction of the predicate u2 = f2. The assignment that satisfies ϕE

1 is
thus

α1 := {u1 �→ 0, f1 �→ 0, f2 �→ 0, u2 �→ 0, z �→ 0, g1 �→ 0, g2 �→ 1,
x1 �→ 2, x2 �→ 3, y1 �→ 4, y2 �→ 5} .

(4.16)

A formal proof based on this argument should include a precise definition
of these shifts, i.e., which vertices do they apply to, and an argument as to
why no circularity can occur. Circularity can affect the termination of the
procedure that constructs α1.

4.4 A Graph-Based Reduction to Propositional Logic

We now consider a decision procedure for equality logic that is based on a
reduction to propositional logic. This procedure was originally presented by
Bryant and Velev in [39] (under the name of the sparse method). Several
definitions and observations are necessary.
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Definition 4.9 (nonpolar equality graph). Given an equality logic for-
mula ϕE, the nonpolar equality graph corresponding to ϕE, denoted by GE

NP
(ϕE),

�

�

�

�

GE

NP

is an undirected graph (V,E) where the nodes in V correspond to the variables
in ϕE, and the edges in E correspond to At(ϕE), i.e., the equality predicates
in ϕE.

A nonpolar equality graph represents a degenerate version of an equality graph
(Definition 4.4), since it disregards the polarity of the equality predicates.

Given an equality logic formula ϕE, the procedure generates two proposi-
tional formulas e(ϕE) and Btrans, such that

�

�

�

�

e(ϕE)
�

�

�

�
BtransϕE is satisfiable ⇐⇒ e(ϕE) ∧ Btrans is satisfiable. (4.17)

The formulas e(ϕE) and Btrans are defined as follows:

• The formula e(ϕE) is the propositional skeleton of ϕE, which means
that every equality predicate of the form xi = xj in ϕE is replaced with a
new Boolean variable ei,j .

1 For example, let

ϕE := x1 = x2 ∧ (((x2 = x3) ∧ (x1 �= x3)) ∨ (x1 �= x2)) . (4.18)

Then,
e(ϕE) := e1,2 ∧ ((e2,3 ∧ ¬e1,3) ∨ ¬e1,2) . (4.19)

It is not hard to see that if ϕE is satisfiable, then so is e(ϕE). The other di-
rection, however, does not hold. For example, while (4.18) is unsatisfiable,
its encoding in (4.19) is satisfiable. To maintain an equisatisfiability rela-
tion, we need to add constraints that impose the transitivity of equality,
which was lost in the encoding. This is the role of Btrans.

• The formula Btrans is a conjunction of implications, which are called tran-
sitivity constraints. Each such implication is associated with a cycle in the
nonpolar equality graph. For a cycle with n edges, Btrans forbids an as-
signment false to one of the edges when all the other edges are assigned
true. Imposing this constraint for each of the edges in each one of the
cycles is sufficient to satisfy the condition stated in (4.17).

Example 4.10. The atoms x1 = x2, x2 = x3, x1 = x3 form a cycle of size
3 in the nonpolar equality graph. The following constraint is sufficient for
maintaining the condition stated in (4.17):

Btrans =

⎛
⎝

(e1,2 ∧ e2,3 =⇒ e1,3)∧
(e1,2 ∧ e1,3 =⇒ e2,3)∧
(e2,3 ∧ e1,3 =⇒ e1,2)

⎞
⎠ . (4.20)

1 To avoid introducing dual variables such as ei,j and ej,i, we can assume that all
equality predicates in ϕE appear in such a way that the left variable precedes the
right one in some predefined order.



90 4 Decision Procedures for Equality Logic and Uninterpreted Functions

Adding n constraints for each cycle is not very practical, however, because
there can be an exponential number of cycles in a given undirected graph.

Definition 4.11 (chord). A chord of a cycle is an edge connecting two non-
adjacent nodes of the cycle. If a cycle has no chords in a given graph, it is
called a chord-free cycle.

Bryant and Velev proved the following theorem:

Theorem 4.12. It is sufficient to add transitivity constraints over simple
chord-free cycles in order to maintain (4.17).

For a formal proof, see [39]. The following example may be helpful for devel-
oping an intuition as to why this theorem is correct.

Example 4.13. Consider the cycle (x3, x4, x8, x7) in one of the two graphs
in Fig. 4.4. It contains the chord (x3, x8) and, hence, is not chord-free. Now
assume that we wish to assign true to all edges in this cycle other than
(x3, x4). If (x3, x8) is assigned true, then the assignment to the simple chord-
free cycle (x3, x4, x8) contradicts transitivity. If (x3, x8) is assigned false,
then the assignment to the simple chord-free cycle (x3, x7, x8) contradicts
transitivity. Thus, the constraints over the chord-free cycles are sufficient for
preventing the transitivity-violating assignment to the cycle that includes a
chord.

The number of simple chord-free cycles in a graph can still be exponential
in the number of vertices. Hence, building Btrans such that it directly con-
strains every such cycle can make the size of this formula exponential in the
number of variables. Luckily, we have:

Definition 4.14 (chordal graphs). A chordal graph is an undirected graph
in which no cycle of size 4 or more is chord-free.

Every graph can be made chordal in a time polynomial in the number of
vertices.2 Since the only chord-free cycles in a chordal graph are triangles,
this implies that applying Theorem 4.12 to such a graph results in a formula
of size not more than cubic in the number of variables (three constraints for
each triangle in the graph). The newly added chords are represented by new
variables that appear in Btrans but not in e(ϕE). Algorithm 4.4.1 summarizes
the steps of this method.

Example 4.15. Figure 4.4 depicts a nonpolar equality graph before and af-
ter making it chordal. We use solid edges, but note that these should not be
confused with the solid edges in (polar) equality graphs, where they denote

2 We simply remove all vertices from the graph one by one, each time connecting
the neighbors of the eliminated vertex if they were not already connected. The
original graph plus the edges added in this process is a chordal graph.
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x2 x4x3

x5 x6 x7

x2x1 x4x3

x5 x6 x7 x8x8

x1

Fig. 4.4. A nonchordal nonpolar equality graph corresponding to ϕE (left), and a
possible chordal version of it (right)
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Algorithm 4.4.1: Equality-Logic-to-Propositional-Logic

Input: An equality formula ϕE

Output: A propositional formula equisatisfiable with ϕE

1. Construct a Boolean formula e(ϕE) by replacing each atom of the form
xi = xj in ϕE with a Boolean variable ei,j .

2. Construct the nonpolar equality graph GE

NP(ϕE).
3. Make GE

NP(ϕE) chordal.
4. Btrans := true.
5. For each triangle (ei,j , ej,k, ei,k) in GE

NP(ϕE),

Btrans := Btrans ∧
(ei,j ∧ ej,k =⇒ ei,k) ∧
(ei,j ∧ ei,k =⇒ ej,k) ∧
(ei,k ∧ ej,k =⇒ ei,j) .

(4.21)

6. Return e(ϕE) ∧ Btrans.

disequalities. After the graph has been made chordal, it contains four trian-
gles and, hence, Btrans conjoins 12 constraints. For example, for the triangle
(x1, x2, x5), the constraints are

e1,2 ∧ e2,5 =⇒ e1,5 ,
e1,5 ∧ e2,5 =⇒ e1,2 ,
e1,2 ∧ e1,5 =⇒ e2,5 .

(4.22)

The added edge e2,5 corresponds to a new auxiliary variable e2,5 that appears
in Btrans but not in e(ϕE).

There exists a version of this algorithm that is based on the (polar) equal-
ity graph, and generates a smaller number of transitivity constraints. See
Problem 4.6 for more details.
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4.5 Equalities and Small-Domain Instantiations

In this section, we show a method for solving equality logic formulas by relying
on the small-model property that this logic has. This means that every
satisfiable formula in this logic has a model (a satisfying interpretation) of
finite size. Furthermore, in equality logic there is a computable bound on
the size of such a model. We use the following definitions in the rest of the
discussion.

Definition 4.16 (adequacy of a domain for a formula). A domain is
adequate for a formula if the formula either is unsatisfiable or has a model
within this domain.

Definition 4.17 (adequacy of a domain for a set of formulas). A do-
main is adequate for a set of formulas if it is adequate for each formula in
the set.

In the case of equality logic, each set of formulas with the same number of
variables has an easily computable adequate finite domain, as we shall soon
see. The existence of such a domain immediately suggests a decision procedure:
simply enumerate all assignments within this domain and check whether one
of them satisfies the formula. Our solution strategy, therefore, for checking
whether a given equality formula ϕE is satisfiable, can be summarized as
follows:

1. Determine, in polynomial time, a domain allocation

D : var(ϕE) �→ 2N (4.23)

(where var(ϕE) denotes the set of variables of ϕE), by mapping each vari-
�

�

�

�
var
�

�

�

�
D

able xi ∈ var(ϕE) into a finite set of integers D(xi), such that ϕE is

�

�

�

�

D(xi)

satisfiable if and only if it is satisfiable within D (i.e., there exists a sat-
isfying assignment in which each variable xi is assigned an integer from
D(xi)).

2. Encode each variable xi as an enumerated type over its finite domain
D(xi). Construct a propositional formula representing ϕE under this finite
domain, and use either BDDs or SAT to check if this formula is satisfiable.

This strategy is called small-domain instantiation, since we instantiate
the variables with a finite set of values from the domain computed, each time
checking whether it satisfies the formula. The number of instantiations in
the worst case is what we call the size of the state space spanned by a
domain. The size of the state space of a domain D, denoted by |D| is equal

�

�

�

�

|D|
to the product of the numbers of elements in the domains of the individual
variables. Clearly, the success of this method depends on its ability to find
domain allocations with small state spaces.
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4.5.1 Some Simple Bounds

We now show several bounds on the number of elements in an adequate do-
main. Let Φn be the (infinite) set of all equality logic formulas with n variables

�

�

�

�
Φn

and without constants.

Theorem 4.18 (“folk theorem”). The uniform domain allocation {1, . . . , n}
for all n variables is adequate for Φn.

Proof. Let ϕE ∈ Φn be a satisfiable equality logic formula. Every satisfying
assignment α to ϕE reflects a partition of its variables into equivalence classes.
That is, two variables are in the same equivalence class if and only if they are
assigned the same value by α. Since there are only equalities and disequalities
in ϕE, every assignment which reflects the same equivalence classes satisfies
exactly the same predicates as α. Since all partitions into equivalence classes
over n variables are possible in the domain 1, . . . , n, this domain is adequate
for ϕE.

This bound, although not yet tight, implies that we can encode each vari-
able in a Φn formula with no more than ⌈log n⌉ bits, and with a total of
n⌈log n⌉ bits for the entire formula in the worst case. This is very encouraging,
because it is already better than the worst-case complexity of Algorithm 4.4.1,
which requires n · (n − 1)/2 bits (one bit per pair of variables) in the worst
case.

Aside: The Complexity Gap
Why is there a complexity gap between domain allocation and the en-
coding method that we described in Sect. 4.4? Where is the wasted work
in Equality-Logic-to-Propositional-Logic? Both algorithms merely
partition the variables into classes of equal variables, but they do it in a
different way. Instead of asking ‘which subset of {v1, . . . , vn} is each variable
equal to?’, with the domain-allocation technique we ask instead ‘which value
in the range {1, . . . , n} is each variable equal to?’. For each variable, rather
than exploring the range of subsets of {v1, . . . , vn} to which it may be equal,
we instead explore the range of values {1, . . . , n}. The former requires one bit
per element in this set, or a total of n bits, while the latter requires only log n
bits.

The domain 1, . . . , n, as suggested above, results in a state space of size
nn. We can do better if we do not insist on a uniform domain allocation, which
allocates the same domain to all variables.

Theorem 4.19. Assume for each formula ϕE ∈ Φn, var(ϕE) = {x1, . . . , xn}.
The domain allocation D := {xi �→ {1, . . . , i} | 1 ≤ i ≤ n} is adequate for Φn.
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Proof. As argued in the proof of Theorem 4.18, every satisfying assignment
α to ϕE ∈ Φn reflects a partition of the variables to equivalence classes. We
construct an assignment α′ as follows.

For each equivalence class C:

• Let xi be the variable with the lowest index in C.
• Assign i to all the variables in C.

Since all the other variables in C have indices higher than i, i is in their
domain, and hence this assignment is feasible. Since each variable appears in
exactly one equivalence class, every class of variables is assigned a different
value, which means that α′ satisfies the same equality predicates as α. This
implies that α′ satisfies ϕE.

The adequate domain suggested in Theorem 4.19 has a smaller state space,
of size n!. In fact, it is conjectured that n! is also a lower bound on the size
of domain allocations adequate for this class of formulas.

Let us now consider the case in which the formula contains constants.

Theorem 4.20. Let Φn,k be the set of equality logic formulas with n variables
�

�

�

�

Φn,k

and k constants. Assume, without loss of generality, that the constants are
c1 < · · · < ck. The domain allocation

D := {xi �→ {c1, . . . , ck, ck + 1, . . . , ck + i} | 1 ≤ i ≤ n} (4.24)

is adequate for Φn,k.

The proof is left as an exercise (Problem 4.8).
The adequate domain suggested in Theorem 4.20 results in a state space

of size (k + n)!/k!. As stated in Sect. 3.1.3, constants can be eliminated by
adding more variables and constraints (k variables in this case), but note that
this would result in a larger state space.

The next few sections are dedicated to an algorithm that reduces the
allocated domain further, based on an analysis of the equality graph associated
with the input formula.

— — —

Sects. 4.5.2, 4.5.3, and 4.5.4 cover advanced topics.

4.5.2 Graph-Based Domain Allocation

The formula sets Φn and Φn,k utilize only a simple structural characteristic
common to all of their members, namely, the number of variables and con-
stants. As a result, they group together many formulas of radically different
nature. It is not surprising that the best size of adequate domain allocation
for the whole set is so high. By paying attention to additional structural sim-
ilarities of formulas, we can form smaller sets of formulas and obtain much
smaller adequate domain allocations.
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As before, we assume that ϕE is given in negation normal form. Let e
denote a set of equality literals and Φ(e) the set of all equality logic formulas

�

�

�

�

Φ(e)
whose literals set is equal to e. Let E(ϕE) denote the set of ϕE’s literals. Thus, �

�

�

�

E(ϕE)
Φ(E(ϕE)) is the set of all equality logic formulas that have the same set of
literals as ϕE. Obviously, ϕE ∈ Φ(E(ϕE)). Note that Φ(e) can include both
satisfiable and unsatisfiable formulas. For example, let e be the set

{x1 = x2, x1 �= x2} . (4.25)

Then Φ(e) includes both the satisfiable formula

x1=x2 ∨ x1 �=x2 (4.26)

and the unsatisfiable formula

x1=x2 ∧ x1 �=x2 . (4.27)

An adequate domain, recall, is concerned only with the satisfiable formulas
that can be constructed from literals in the set. Thus, we should not worry
about (4.27). We should, however, be able to satisfy (4.26), as well as formulas
such as x1 = x2 ∧ (true ∨ x1 �= x2) and x1 �= x2 ∧ (true ∨ x1 = x2). One
adequate domain for the set Φ(e) is

D := {x1 �→ {0}, x2 �→ {0, 1}} . (4.28)

It is not hard to see that this domain is minimal, i.e., there is no adequate
domain with a state space smaller than 2 for Φ(e).

How do we know, then, which subsets of the literals in E(ϕE) we need to
be able to satisfy within the domain D, in order for D to be adequate for
Φ(E(ϕE))? The answer is that we need only to be able to satisfy consistent
subsets of literals, i.e., subsets for which the conjunction of literals in each of
them is satisfiable.

A set e of equality literals is consistent if and only if it does not contain
one of the following two patterns:

1. A chain of the form x1 = x2, x2 = x3, . . . , xr−1 = xr together with the
formula x1 �= xr.

2. A chain of the form c1 = x2, x2 = x3, . . . , xr−1 = cr where c1 and cr

represent different constants.

In the equality graph corresponding to e, the first pattern appears as a con-
tradictory cycle (Definition 4.7) and the second as an equality path (Defini-
tion 4.5) between two constants.

To summarize, a domain allocation D is adequate for Φ(E(ϕE)) if every
consistent subset e ⊆ E(ϕE) is satisfiable within D. Hence, finding an adequate
domain for Φ(E(ϕE)) is reduced to the following problem:

Associate with each variable xi a set of integers D(xi) such that every
consistent subset e ∈ E(ϕE) can be satisfied with an assignment from
these sets.
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We wish to find sets of this kind that are as small as possible, in polynomial
time.

4.5.3 The Domain Allocation Algorithm

Let GE(ϕE) be the equality graph (see Definition 4.4) corresponding to ϕE,
defined by (V,E=, E�=). Let GE

= and GE

�= denote two subgraphs of GE(ϕE),
�

�

�

�

GE

=

�

�

�

�

GE

�=

defined by (V,E=) and (V,E �=), respectively. As before, we use dashed edges
to represent GE

= edges and solid edges to represent GE

�= edges. A vertex is
called mixed if it is adjacent to edges in both GE

= and GE

�=.
On the basis of the definitions above, Algorithm 4.5.1 computes an eco-

nomical domain allocation D for the variables in a given equality formula ϕE.
The algorithm receives as input the equality graph GE(ϕE), and returns as out-
put a domain which is adequate for the set Φ(E(ϕE)). Since ϕE ∈ Φ(E(ϕE)),
this domain is adequate for ϕE.

We refer to the values that were added in steps I.A.2, I.C, II.A.1, and
II.B as the characteristic values of these vertices. We write char(xi) = ui

and char(xk) = uC=
. Note that every vertex is assigned a single character-

�

�

�

�
char

istic value. Vertices that are assigned their characteristic values in steps I.C
and II.A.1 are called individually assigned vertices, whereas the vertices as-
signed characteristic values in step II.B are called communally assigned ver-
tices. We assume that new values are assigned in ascending order, so that
char(xi) < char(xj) implies that xi was assigned its characteristic value be-
fore xj . Consequently, we require that all new values are larger than the largest
constant Cmax. This assumption is necessary only for simplifying the proof in
later sections.

The description of the algorithm presented above leaves open the order in
which vertices are chosen in step II.A.1. This order has a strong impact on
the size of the resulting state space. Since the values given in this step are
distributed on the graph GE

= in step II.A.2, we would like to keep this set as
small as possible. Furthermore, we would like to partition the graph quickly,
in order to limit this distribution. A rather simple, but effective heuristic for
this purpose is to choose vertices according to a greedy criterion, where mixed
vertices are chosen in descending order of their degree in GE

�=. We denote the
set of vertices chosen in step II.A.1 by MV, to remind ourselves that they are

�

�

�

�
MV

mixed vertices.

Example 4.21. We wish to check whether (4.6), copied below, is satisfiable:

¬ϕE :=

⎧
⎪⎪⎪⎪⎪⎩

(x1 �= x2 ∨ y1 �= y2 ∨ f1 = f2) ∧
(u1 �= f1 ∨ u2 �= f2 ∨ g1 = g2) ∧
u1 = f1 ∧ u2 = f2 ∧ z = g1

⎫
⎪⎪⎪⎪⎪⎭ ∧ z �= g2 . (4.29)

The sets E= and E �= are:

E= := {(f1 = f2), (g1 = g2), (u1 = f1), (u2 = f2), (z = g1)}
E�= := {(x1 �= x2), (y1 �= y2), (u1 �= f1), (u2 �= f2), (z �= g2)} ,

(4.30)
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�

�

�

�

Algorithm 4.5.1: Domain-Allocation-for-Equalities

Input: An equality graph GE

Output: An adequate domain (in the form of a set of integers for each
variable-vertex) for the set of formulas over literals that are
represented by GE edges

I. Eliminating constants and preprocessing

Initially, D(xi) = ∅ for all vertices xi ∈ GE.
A. For each constant-vertex ci in GE, do:

1. (Empty item, for the sake of symmetry with step II.A.)
2. Assign D(xj) := D(xj) ∪ {ci} for each vertex xj , such that there is an

equality path from ci to xj not through any other constant-vertex.
3. Remove ci and its adjacent edges from the graph.

B. Remove all GE

�= edges that do not lie on a contradictory cycle.
C. For every singleton vertex (a vertex comprising a connected component by

itself) xi, add to D(xi) a new value ui. Remove xi and its adjacent edges
from the graph.

II. Value allocation

A. While there are mixed vertices in GE do:

1. Choose a mixed vertex xi. Add ui, a new value, to D(xi).
2. Assign D(xj) := D(xj)∪ {ui} for each vertex xj , such that there is an

equality path from xi to xj .
3. Remove xi and its adjacent edges from the graph.

B. For each (remaining) connected GE

= component C=, add a common new
value uC= to D(xk), for every xk ∈ C=.

Return D.

and the corresponding equality graph GE(¬ϕE) reappears in Fig. 4.5.

g2

y1 y2

f1 f2 u2

x1 x2

u1

z

g1

Fig. 4.5. The equality graph GE(¬ϕE)
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We refrain in this example from applying preprocessing, in order to make
the demonstration of the algorithm more informative and interesting. This
example results in a state space of size 1111 if we use the domain {1, . . . , n}
as suggested in Theorem 4.18, and a state space of size 11! (≈ 4× 107) if we
use the domain suggested in Theorem 4.19. Applying Algorithm 4.5.1, on the
other hand, results in an adequate domain spanning a state space of size 48,
as can be seen in Fig. 4.6.

Step x1 x2 y1 y2 u1 f1 f2 u2 g2 z g1 Removed

I.B edges
(x1 − x2),
(y1 − y2)

I.C 0 1 2 3 x1, x2, y1, y2

II.A 4 4 4 4 f1

II.A 5 5 f2

II.A 6 6 6 g2

II.B 7

II.B 8

II.B 9 9

Final State space
D-sets 0 1 2 3 4, 7 4 4, 5 4, 5, 8 6 6, 9 6, 9 = 48

Fig. 4.6. Application of Algorithm 4.5.1 to (4.29)

Using a small improvement concerning the new values allocated in step
II.A.1, this allocation can be reduced further, down to a domain of size 16.
This improvement is the subject of Problem 4.12.

For demonstration purposes, consider a formula ϕE where g1 is replaced by
the constant “3”. In this case the component (z, g1, g2) is handled as follows:
in step I.A, “3” is added to D(g2) and D(z). The edge (z, g2), now no longer
part of a contradictory cycle, is then removed in step I.B and a distinct new
value is added to each of these variables in step I.C.

Algorithm 4.5.1 is polynomial in the size of the input graph: steps I.A and
II.A are iterated a number of times not more than the number of vertices in
the graph; step I.B is iterated not more than the number of edges in GE

�=; steps
I.A.2, I.B, II.A.2 and II.B can be implemented with depth-first search (DFS).

4.5.4 A Proof of Soundness

In this section, we argue for the soundness of Algorithm 4.5.1. We begin by de-
scribing a procedure which, given the allocation D produced by this algorithm
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and a consistent subset e, assigns to each variable xi ∈ GE an integer value
ae(xi) ∈ D(xi). We then continue by proving that this assignment satisfies

�

�

�

�
ae

the literals in e.

An Assignment Procedure

Given a consistent subset of literals e and its corresponding equality graph
GE(e), assign to each variable-vertex xi ∈ GE(e) a value ae(xi) ∈ D(xi),
according to the following rules:

R1 If xi is connected by a (possibly empty) GE

=(e)-path to an individually
assigned vertex xj , assign to xi the minimal value of char(xj) among
such xj ’s.

R2 Otherwise, assign to xi its communally assigned value char(xi).

To see why all vertices are assigned a value by this procedure, observe that
every vertex is allocated a characteristic value before it is removed. This can
be an individual characteristic value allocated in steps I.C and II.A.1, or a
communal value allocated in step II.B. Every vertex xi that has an individual
characteristic value can be assigned a value ae(xi) by R1, because it has
at least the empty equality path leading to an individually allocated vertex,
namely itself. All other vertices are allocated a communal value that makes
them eligible for a value assignment by R2.

Example 4.22. Consider the D-sets in Fig. 4.6. Let us apply the above as-
signment procedure to a consistent subset e that contains all edges, excluding
the two edges between u1 and f1, the dashed edge between g1 and g2, and the
solid edge between f2 and u2 (see Fig. 4.7).

2 3 9

4 4 47 9 6

10

x2

u1

z

g1 g2

y1 y2

f1 f2 u2

x1

Fig. 4.7. The consistent set of edges e considered in Example 4.22 and the values
assigned by the assignment procedure

The assignment is as follows:

• By R1, x1, x2, y1 and y2 are assigned the characteristic values “0”, “1”,
“2”, and “3”, respectively, which they received in step I.C.

• By R1, f1, f2 and u2 are assigned the value char(f1) =“4”, because f1

was the first mixed vertex in the subgraph {f1, f2, u2} that was removed
in step II.A, and consequently it has the minimal characteristic value.
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• By R1, g2 is assigned the value char(g2) =“6”, which it received in step
II.A.

• By R2, z and g1 are assigned the value “9”, which they received in step
II.B.

• By R2, u1 is assigned the value “7”, which it received in step II.B.

Theorem 4.23. The assignment procedure is feasible (i.e., the value assigned
to a node by the procedure belongs to its D-set).

Proof. Consider first the two classes of vertices that are assigned a value
by R1. The first class includes vertices that are removed in step I.C. These
vertices have only one (empty) GE

=(e)-path to themselves, and are therefore
assigned the characteristic value that they received in that step. The second
class includes vertices that have a (possibly empty) GE

=(e)-path to a vertex
from MV . Let xi denote such a vertex, and let xj be the vertex with the
minimal characteristic value that xi can reach on GE

=(e). Since xi and all the
vertices on this path were still part of the graph when xj was removed in step
II.A, then char(xj) was added to D(xi) according to step II.A.2. Thus, the
assignment of char(xj) to xi is feasible.

Next, consider the vertices that are assigned a value by R2. Every vertex
that was removed in step I.C or II.A is clearly assigned a value by R1. All the
other vertices were communally assigned a value in step II.B. In particular,
the vertices that do not have a path to an individually assigned vertex were
assigned such a value. Thus, the two steps of the assignment procedure are
feasible.

Theorem 4.24. If e is a consistent set, then the assignment ae satisfies all
the literals in e.

Proof. Consider first the case of two variables xi and xj that are connected
by a GE

=(e)-edge. We have to show that ae(xi) = ae(xj). Since xi and xj

are GE

=(e)-connected, they belong to the same GE

=(e)-connected component.
If they were both assigned a value by R1, then they were assigned the min-
imal value of an individually assigned vertex to which they are both GE

=(e)-
connected. If, on the other hand, they were both assigned a value by R2,
then they were assigned the communal value assigned to the GE

= component
to which they both belong. Thus, in both cases they are assigned the same
value.

Next, consider the case of two variables xi and xj that are connected by
a GE

�=(e)-edge. To show that ae(xi) �= ae(xj), we distinguish three cases:

• If both xi and xj were assigned values by R1, they must have inherited
their values from two distinct individually assigned vertices, because, oth-
erwise, they are both connected by a GE

=(e)-path to a common vertex,
which together with the (xi, xj) GE

�=(e)-edge closes a contradictory cycle,
excluded by the assumption that e is consistent.
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• If one of xi, xj was assigned a value by R1 and the other acquired its value
from R2, then since any communal value is distinct from any individually
assigned value, ae(xi) must differ from ae(xj).

• The remaining case is when both xi and xj were assigned values by R2.
The fact that they were not assigned values in R1 implies that their char-
acteristic values are not individually allocated, but communally allocated.
Assume falsely that ae(xi) = ae(xj). This means that xi and xj were al-
located their communal values in the same step, II.B, of the allocation
algorithm, which implies that they had an equality path between them
(moreover, this path was still part of the graph at the beginning of step
II.B). Hence, xi and xj belong to a contradictory cycle, and the solid edge
(xi, xj) was therefore still part of GE

=(e) at the beginning of step II.A.
According to the loop condition of this step, at the end of this step there
are no mixed vertices left, which rules out the possibility that (xi, xj) was
still part of the graph at that stage. Thus, at least one of these vertices
was individually assigned a value in step II.A.1, and, consequently, the
component that it belongs to is assigned a value by R1, in contradiction
to our assumption.

Theorem 4.25. The formula ϕE is satisfiable if and only if ϕE is satisfiable
over D.

Proof. By Theorems 4.23 and 4.24, D is adequate for E=∪E �=. Consequently,
D is adequate for Φ(At(ϕE)), and in particular D is adequate for ϕE. Thus,
by the definition of adequacy, ϕE is satisfiable if and only if ϕE is satisfiable
over D.

4.5.5 Summary

To summarize Sect. 4.5, the domain allocation method can be used as the
first stage of a decision procedure for equality logic. In the second stage, the
allocated domains can be enumerated by a standard BDD or by a SAT-based
tool. Domain allocation has the advantage of not changing (in particular,
not increasing) the original formula, unlike the algorithm that we studied in
Sect. 4.4. Moreover, Algorithm 4.5.1 is highly effective in practice in allocating
very small domains.

4.6 Ackermann’s vs. Bryant’s Reduction: Where Does It
Matter?

We conclude this chapter by demonstrating how the two reductions lead to
different equality graphs and hence change the result of applying any of the
algorithms studied in this chapter that are based on this equality graph.
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Example 4.26. Suppose that we want to check the satisfiability of the fol-
lowing (satisfiable) formula:

ϕUF := x1 = x2 ∨ (F (x1) �= F (x2) ∧ false) . (4.31)

With Ackermann’s reduction, we obtain:

ϕE := (x1 = x2 =⇒ f1 = f2) ∧ (x1 = x2 ∨ (f1 �= f2 ∧ false)) . (4.32)

With Bryant’s reduction, we obtain:

flatE := x1 = x2 ∨ (F ⋆
1 �= F ⋆

2 ∧ false) , (4.33)

FCE := F ⋆
1 = f1 ∧

F ⋆
2 =

(
case x1 = x2 : f1

true : f2

)
,

(4.34)

and, as always,
ϕE := FCE ∧ flatE . (4.35)

The equality graphs corresponding to the two reductions appear in Fig. 4.8.
Clearly, the allocation for the right graph (due to Bryant’s reduction) is
smaller.

x2

f1 f2 f1 f2

x1 x2 x1

Fig. 4.8. The equality graph corresponding to Example 4.26 obtained with Acker-
mann’s reduction (left) and with Bryant’s reduction (right)

Indeed, an adequate range for the graph on the right is

D := {x1 �→ {0}, x2 �→ {0, 1}, f1 �→ {2}, f2 �→ {3}} . (4.36)

These domains are adequate for (4.35), since we can choose the satisfying
assignment

{x1 �→ 0, x2 �→ 0, f1 �→ 2, f2 �→ 3} . (4.37)

On the other hand, this domain is not adequate for (4.32).
In order to satisfy (4.32), it must hold that x1 = x2, which implies that

f1 = f2 must hold as well. But the domains allocated in (4.36) do not allow
an assignment in which f1 is equal to f2, which means that the graph on the
right of Fig. 4.8 is not adequate for (4.32).
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So what has happened here? Why does Ackermann’s reduction require a
larger range?

The reason is that when two function instances F (x1) and F (x2) have
equal arguments, in Ackermann’s reduction the two variables representing
the functions, say f1 and f2, are constrained to be equal. But if we force
f1 and f2 to be different (by giving them a singleton domain composed of a
unique constant), this forces FCE to be false, and, consequently ϕE to be
false. On the other hand, in Bryant’s reduction, if the arguments x1 and x2

are equal, the terms F ⋆
1 and F ⋆

2 that represent the two functions are both
assigned the value of f1. Thus, even if f2 �= f1, this does not necessarily make
FCE false.

In the bibliographic notes of this chapter, we mention several publications
that exploit this property of Bryant’s reduction for reducing the allocated
range and even constructing smaller equality graphs. It turns out that not all
of the edges that are associated with the functional-consistency constraints
are necessary, which, in turn, results in a smaller allocated range.

4.7 Problems

4.7.1 Conjunctions of Equalities and Uninterpreted Functions

Problem 4.1 (deciding a conjunction of equalities with equivalence
classes). Consider Algorithm 4.7.1. Present details of an efficient implemen-
tation of this algorithm, including a data structure. What is the complexity
of your implementation?

�

�

�

�

Algorithm 4.7.1: Decide-a-conjunction-of-equalities-with-
equivalence-classes

Input: A conjunction ϕE of equality predicates
Output: “Satisfiable” if ϕE is satisfiable, and “Unsatisfiable” oth-

erwise

1. Define an equivalence class for each variable. For each equality x = y
in ϕE, unite the equivalence classes of x and y.

2. For each disequality u �= v in ϕE, if u is in the same equivalence class
as v, return “Unsatisfiable”.

3. Return “Satisfiable”.

Problem 4.2 (deciding a conjunction of equality predicates with a
graph analysis). Show a graph-based algorithm for deciding whether a given
conjunction of equality predicates is satisfiable. What is the complexity of your
algorithm?
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Problem 4.3 (a generalization of the Congruence-Closure algo-
rithm). Generalize Algorithm 4.1.1 to the case in which the input formula
includes uninterpreted functions with multiple arguments.

4.7.2 Reductions

Problem 4.4 (a better way to eliminate constants?). Is the following
theorem correct?

Theorem 4.27. An equality formula ϕE is satisfiable if and only if the for-
mula ϕE′ generated by Algorithm 4.7.2 (Remove-constants-optimized) is
satisfiable.

Prove the theorem or give a counterexample. You may use the result of Prob-
lem 3.2 in your proof.

�

�

�

�

Algorithm 4.7.2: Remove-constants-optimized

Input: An equality logic formula ϕE

Output: An equality logic formula ϕE′ such that ϕE′ contains
no constants and ϕE′ is satisfiable if and only if ϕE is
satisfiable

1. ϕE′ := ϕE.
2. Replace each constant c in ϕE′ with a new variable Cc.
3. For each pair of constants ci, cj with an equality path between them

(ci =∗ cj) not through any other constant, add the constraint Cci
�=

Ccj
to ϕE′. (Recall that the equality path is defined over GE(ϕE),

where ϕE is given in NNF.)

Problem 4.5 (correctness of the simplification step). Prove the correct-
ness of Algorithm 4.3.1. You may use the proof strategy suggested in Sect. 4.3.

Problem 4.6 (reduced transitivity constraints). (Based on [126, 169].)
Consider the equality graph in Fig. 4.9. The sparse method generates Btrans

with three transitivity constraints (recall that it generates three constraints
for each triangle in the graph, regardless of the polarity of the edges). Now
consider the following claim: the single transitivity constraint Brtc = (e0,2 ∧
e1,2 =⇒ e0,1) is sufficient (the subscript rtc stands for “reduced transitivity
constraints”).

To justify this claim, it is sufficient to show that for every assignment
αrtc that satisfies e(ϕE)∧Brtc, there exists an assignment αtrans that satisfies
e(ϕE) ∧ Btrans. Since this, in turn, implies that ϕE is satisfiable as well, we
obtain the result that ϕE is satisfiable if and only if e(ϕE)∧Brtc is satisfiable.
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x1

x2

x0

αrtc αtrans

e0,1 true true
e1,2 true true
e0,2 false true

Fig. 4.9. Taking polarity into account allows us to construct a less constrained
formula. For this graph, the constraint Brtc = (e0,2 ∧ e1,2 =⇒ e0,1) is sufficient.
An assignment αrtc that satisfies Brtc but breaks transitivity can always be “fixed”
so that it does satisfy transitivity, while still satisfying the propositional skeleton
e(ϕE). The assignment αtrans demonstrates such a “fixed” version of the satisfying
assignment

We are able to construct such an assignment αtrans because of the mono-
tonicity of NNF (see Theorem 1.14, and recall that the polarity of the edges in
the equality graph is defined according to their polarity in the NNF represen-
tation of ϕE). There are only two satisfying assignments to Brtc that do not
satisfy Btrans. One of these assignments is shown in the αrtc column in the
table to the right of the drawing. The second column shows a corresponding
assignment αtrans, which clearly satisfies Btrans.

However, we still need to prove that every formula e(ϕE) that corresponds
to the above graph is still satisfied by αtrans if it is satisfied by αrtc. For
example, for e(ϕE) = (¬e0,1 ∨ e1,2 ∨ e0,2), both αrtc |= e(ϕE) ∧ Brtc and
αtrans |= e(ϕE) ∧ Btrans. Intuitively, this is guaranteed to be true because
αtrans is derived from αrtc by flipping an assignment of a positive (unnegated)
predicate (e0,2) from false to true. We can equivalently flip an assignment
to a negated predicate (e0,1 in this case) from true to false.

1. Generalize this example into a claim: given a (polar) equality graph, which
transitivity constraints are necessary and sufficient?

2. Show an algorithm that computes the constraints that you suggest in the
item above. What is the complexity of your algorithm? (Hint : there exists
a polynomial algorithm, which is hard to find. An exponential algorithm
will suffice as an answer to this question).

4.7.3 Complexity

Problem 4.7 (complexity of deciding equality logic). Prove that decid-
ing equality logic is NP-complete.

Note that to show membership in NP, it is not enough to say that every
solution can be checked in P-time, because the solution itself can be arbitrarily
large, and hence even reading it is not necessarily a P-time operation.
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4.7.4 Domain Allocation

Problem 4.8 (adequate domain for Φn,k). Prove Theorem 4.20.

Problem 4.9 (small-domain allocation). Prove the following lemma.

Lemma 4.28. If a domain D is adequate for Φ(e) and e′ ⊆ e, then D is
adequate for φ(e′).

Problem 4.10 (small-domain allocation: an adequate domain). Prove
the following theorem:

Theorem 4.29. If all the subsets of E(ϕE) are consistent, then there exists
an allocation R such that |R| = 1.

Problem 4.11 (formulation of the graph-theoretic problem). Give a
self-contained formal definition of the following decision problem: given an
equality graph G and a domain allocation D, is D adequate for G?

Problem 4.12 (small-domain allocation: an improvement to the al-
location heuristic). Step II.A.1 of Algorithm 4.5.1 calls for allocation of
distinct characteristic values to the mixed vertices. The following example
proves that this is not always necessary.

Consider the subgraph {u1, f1, f2, u2} of the graph in Fig. 4.2. Appli-
cation of the basic algorithm to this subgraph may yield the following allo-
cation, where the characteristic values assigned are underlined: R1 : u1 �→
{0, 2}, f1 �→ {0}, f2 �→ {0, 1}, u2 �→ {0, 1, 3}. This allocation leads to a state
space complexity of 12. By relaxing the requirement that all individually as-
signed characteristic values should be distinct, we can obtain the allocation
R2 : u1 �→ {0, 2}, f1 �→ {0}, f2 �→ {0}, u2 �→ {0, 1} with a state-space com-
plexity of 4. This reduces the size of the state space of the entire graph from
48 to 16.

It is not difficult to see that R2 is adequate for the subgraph considered.
What are the conditions under which it is possible to assign equal val-

ues to mixed variables? Change the basic algorithm so that it includes this
optimization.

4.8 Bibliographic Notes

The treatment of equalities and uninterpreted functions can be divided into
several eras. In the first era, before the emergence of the first effective theorem
provers in the 1970’s, this logic was considered only from the point of view of
mathematical logic, most notably by Ackermann [1]. In the same book, he also
offered what we have called Ackermann’s reduction in this book. Equalities
were typically handled with rewriting rules, for example substituting x with
y given that x = y.
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The second era started in the mid 1970’s with the work of Downey, Sethi,
and Tarjan [69], who showed that the decision problem was a variation on the
common-subexpression problem; the work of Nelson and Oppen [136], who
applied the union–find algorithm to compute the congruence closure and im-
plemented it in the Stanford Pascal Verifier; and then the work of Shostak, who
suggested in [178] the congruence closure method that was briefly presented
in Sect. 4.1. All of this work was based on computing the congruence closure,
and indicated a shift from the previous era, as it offered complete and rela-
tively efficient methods for deciding equalities and uninterpreted functions. In
its original presentation, Shostak’s method relied on syntactic case-splitting
(see Sect. 1.3), which is the source of the inefficiency of that algorithm. In
Shostak’s words, “it was found that most examples four or five lines long could
be handled in just a few seconds”. Even factoring in the fact that this was
done on a 1978 computer (a DEC-10 computer), this statement still shows
how much progress has been made since then, as nowadays many formulas
with tens of thousands of variables are solved in a few seconds. Several vari-
ants on Shostak’s method exist, and have been compared and described in
a single theoretical framework called abstract congruence closure in [8].
Shostak’s method and its variants are still used in theorem provers, although
several improvements have been suggested to combat the practical complexity
of case-splitting, namely lazy case-splitting, in which the formula is split only
when it is necessary for the proof, and other similar techniques.

The third era of deciding this theory avoided syntactic case-splitting al-
together and instead promoted the use of semantic case-splitting, that is,
splitting the domain instead of splitting the formula. All of the methods of
this type are based on an underlying decision procedure for Boolean formulas,
such as a SAT engine or the use of BDDs. We failed to find an original ref-
erence for the fact that the range {1, . . . , n} is adequate for formulas with n
variables. This is usually referred to as a “folk theorem” in the literature. The
work by Hojati, Kuehlmann, German, and Brayton in [95] and Hojati, Isles,
Kirkpatrick, and Brayton in [94] was the first, as far as we know, where any-
one tried to decide equalities with finite instantiation, while trying to derive
a value k, k ≤ n that was adequate as well, by analyzing the equality graph.
The method presented in Sect. 4.5 was the first to consider a different range
for each variable and, hence, is much more effective. It is based on work by
Pnueli, Rodeh, Siegel, and Strichman in [154, 155]. These papers suggest that
Ackermann’s reduction should be used, which results in large formulas, and,
consequently, large equality graphs and correspondingly large domains (but
much smaller than the range {1, . . . , n}). Bryant, German and Velev suggested
in [38] what we refer to as Bryant’s reduction in Sect. 3.3.2. This technique
enabled them to exploit what they called the positive equality structure in
formulas for assigning unique constants to some of the variables and a full
range to the others. Using the terminology of this chapter, these variables
are adjacent only to solid edges in the equality graph corresponding to the
original formula (a graph built without referring to the functional-consistency
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constraints, and hence the problem of a large graph due to Ackermann’s con-
straints disappears). A more robust version of this technique, in which a larger
set of variables can be replaced with constants, was later developed by Lahiri,
Bryant, Goel, and Talupur [112].

In [167, 168], Rodeh and Shtrichman presented a generalization of posi-
tive equality that enjoys benefits from both worlds: on the one hand, it does
not add all the edges that are associated with the functional-consistency con-
straints (it adds only a small subset of them based on an analysis of the
formula), but on the other hand it assigns small ranges to all variables as
in [155] and, in particular, a single value to all the terms that would be as-
signed a single value by the technique of [38]. This method decreases the size
of the equality graph in the presence of uninterpreted functions, and conse-
quently the allocated ranges (for example, it allocates a domain with a state
space of size 2 for the running example in Sect. 4.5.3). Rodeh showed in his
thesis [167] (also see [153]) an extension of range allocation to dynamic range
allocation. This means that each variable is assigned not one of several con-
stants, as prescribed by the allocated domain, but rather one of the variables
that represent an immediate neighbor in GE

=, or a unique constant if it has
one or more neighbors in GE

�=. The size of the state space is thus proportional
to log n, where n is the number of neighbors.

Goel, Sajid, Zhou, Aziz, and Singhal were the first to encode each equality
with a new Boolean variable [87]. They built a BDD corresponding to the en-
coded formula, and then looked for transitivity-preserving paths in the BDD.
Bryant and Velev suggested in [39] that the same encoding should be used but
added explicit transitivity constraints instead. They considered several trans-
lation methods, only the best of which (the sparse method) was presented
in this chapter. One of the other alternatives is to add such a constraint for
every three variables (regardless of the equality graph). A somewhat similar
approach was considered by Zantema and Groote [206]. The sparse method
was later superseded by the method of Meir and Strichman [126] and later
by that of Rozanov and Strichman [169], where the polar equality graph is
considered rather than the nonpolar one, which leads to a smaller number of
transitivity constraints. This direction is mentioned in Problem 4.6.

All the methods that we discussed in this chapter, other than congruence
closure, belong to the third era. A fourth era, based on an interplay between
a SAT solver and a decision procedure for a conjunction of terms (such as
congruence closure in the case of EUF formulas), has emerged in the last few
years, and is described in detail in Chap. 11. The idea is also explained briefly
at the end of Sect. 4.1.

4.9 Glossary

The following symbols were used in this chapter:
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First used
Symbol Refers to . . . on page . . .

E=, E�= Sets of equality and inequality predicates, and also
the edges in the equality graph

83

At(ϕE) The set of atoms in the formula ϕE 83

GE Equality graph 84

x =∗ y There exists an equality path between x and y in the
equality graph

84

x �=∗ y There exists a disequality path between x and y in
the equality graph

84

e(ϕE) The propositional skeleton of ϕE 89

Btrans The transitivity constraints due to the reduction
from ϕE to Bsat by the sparse method

89

GE

NP
Nonpolar equality graph 89

var(ϕE) The set of variables in ϕE 92

D A domain allocation function. See (4.23) 92

|D| The state space spanned by a domain 92

Φn The (infinite) set of equality logic formulas with n
variables

93

Φn,k The (infinite) set of equality logic formulas with n
variables and k constants

94

φ(e) The (infinite) set of equality formulas with a set of
literals equal to e

95

E(ϕE) The set of literals in ϕE 95

GE

=, GE

�= The projections of the equality graph on the E= and
E�= edges, respectively

96

char(v) The characteristic value of a node v in the equality
graph

96

continued on next page
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continued from previous page

First used
Symbol Refers to . . . on page . . .

MV The set of mixed vertices that are chosen in step
II.A.1 of Algorithm 4.5.1

96

ae(x) An assignment to a variable x from its allocated do-
main D(x)

99



5

Linear Arithmetic

5.1 Introduction

This chapter introduces decision procedures for conjunctions of linear con-
straints. An extension of these decision procedures for solving a general lin-
ear arithmetic formula, i.e., with an arbitrary Boolean structure, is given in
Chap. 11.

Definition 5.1 (linear arithmetic). The syntax of a formula in linear
arithmetic is defined by the following rules:

formula : formula ∧ formula | (formula) | atom

atom : sum op sum

op : = | ≤ | <

sum : term | sum + term

term : identifier | constant | constant identifier

The binary minus operator a−b can be read as “syntactic sugar” for a+ −1b.
The operators ≥ and > can be replaced by ≤ and < if the coefficients are
negated. We consider the rational numbers and the integers as domains. For
the former domain the problem is polynomial, and for the latter the problem
is NP-complete.

As an example, the following is a formula in linear arithmetic:

3x1 + 2x2 ≤ 5x3 ∧ 2x1 − 2x2 = 0 . (5.1)

Note that equality logic, as discussed in Chap. 4, is a fragment of linear
arithmetic.

Many problems arising in the code optimization performed by compilers
are expressible with linear arithmetic over the integers. As an example, con-
sider the following C code fragment:
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for(i=1; i<=10; i++)
a[j+i]=a[j];

This fragment is intended to replicate the value of a[j] into the locations
a[j+1] to a[j+10]. In a DLX-like assembly language,1 a compiler might
generate the code for the body of the loop as follows. Suppose variable i is
stored in register R1, and variable j is stored in register R2:

R4 ←− mem[a+R2] /* set R4 to a[j] */
R5 ←− R2+R1 /* set R5 to j+i */
mem[a+R5] ←− R4 /* set a[j+i] to a[j] */
R1 ←− R1+1 /* i++ */

Code that requires memory access is typically very slow compared with code
that operates only on the internal registers of the CPU. Thus, it is highly
desirable to avoid load and store instructions. A potential optimization for the
code above is to move the load instruction for a[j], i.e., the first statement
above, out of the loop body. After this transformation, the load instruction is
executed only once at the beginning of the loop, instead of 10 times. However,
the correctness of this transformation relies on the fact that the value of
a[j] does not change within the loop body. We can check this condition by
comparing the index of a[j+i] with the index of a[j] together with the
constraint that i is between 1 and 10:

i ≥ 1 ∧ i ≤ 10 ∧ j + i = j . (5.2)

This formula has no satisfying assignment, and thus, the memory accesses
cannot overlap. The compiler can safely perform the read access to a[j] only
once.

5.1.1 Solvers for Linear Arithmetic

The simplex method is one of the oldest algorithms for numerical optimiza-
tion. It is used to find an optimal value for an objective function given a
conjunction of linear constraints over real variables. The objective function
and the constraints together are called a linear program (LP). However,
since we are interested in the decision problem rather than the optimization
problem, we cover in this chapter a variant of the simplex method called gen-
eral simplex that takes as input a conjunction of linear constraints over the
reals without an objective function, and decides whether this set is satisfiable.

Integer linear programming, or ILP, is the same problem for con-
straints over integers. Section 5.3 covers Branch and Bound, an algorithm
for deciding such problems.

1 The DLX architecture is a RISC-like computer architecture, which is similar to
the MIPS architecture [149].
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These two algorithms can solve conjunctions of a large number of con-
straints efficiently. We shall also describe two other methods that are consid-
ered less efficient, but can still be competitive for solving small problems. We
describe them because they are still used in practice, they are relatively easy
to implement in their basic form, and they will be mentioned again later in
Chap. 11, owing to the fact that they are based on variable elimination. The
first of these methods is called Fourier–Motzkin variable elimination, and
decides the satisfiability of a conjunction of linear constraints over the reals.
The second method is called Omega test, and decides the satisfiability of a
conjunction of linear constraints over the integers.

5.2 The Simplex Algorithm

5.2.1 Decision Problems and Linear Programs

The simplex algorithm, originally developed by Danzig in 1947, decides satis-
fiability of a conjunction of weak linear inequalities. The set of constraints is
normally accompanied by a linear objective function in terms of the variables
of the formula. If the set of constraints is satisfiable, the simplex algorithm
provides a satisfying assignment that maximizes the value of the objective
function. Simplex is worst-case exponential. Although there are polynomial-
time algorithms for solving this problem (the first known polynomial-time al-
gorithm, introduced by Khachiyan in 1979, is called the ellipsoid method),
simplex is still considered a very efficient method in practice and the most
widely used, apparently because the need for an exponential number of steps
is rare in real problems.

As we are concerned with the decision problem rather than the optimiza-
tion problem, we are going to cover a variant of the simplex algorithm called
general simplex that does not require an objective function. The general
simplex algorithm accepts two types of constraints as input:

1. Equalities of the form

a1x1 + . . . + anxn = 0 . (5.3)

2. Lower and upper bounds on the variables:2

li ≤ xi ≤ ui , (5.4)

where li and ui are constants representing the lower and upper bounds
�

�

�

�
li

�

�

�

�
ui

on xi, respectively. The bounds are optional as the algorithm supports
unbounded variables.

2 This is in contrast to the classical simplex algorithm, in which all variables are
constrained to be nonnegative.
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This representation of the input formula is called the general form. This
statement of the problem does not restrict the modeling power of weak linear
constraints, as we can transform an arbitrary weak linear constraint L ⊲⊳ R
with ⊲⊳∈ {=,≤,≥} into the form above as follows. Let m be the number of

�

�

�

�
m

constraints. For the i-th constraint, 1 ≤ i ≤ m:

1. Move all addends in R to the left-hand side to obtain L′ ⊲⊳ b, where b is
a constant.

2. Introduce a new variable si. Add the constraints

L′ − si = 0 and si ⊲⊳ b . (5.5)

If ⊲⊳ is the equality operator, rewrite si = b to si ≥ b and si ≤ b.

The original and the transformed conjunctions of constraints are obviously
equisatisfiable.

Example 5.2. Consider the following conjunction of constraints:

x +y ≥ 2 ∧
2x −y ≥ 0 ∧
−x +2y ≥ 1 .

(5.6)

The problem is rewritten into the general form as follows:

x +y −s1 = 0 ∧
2x −y −s2 = 0 ∧
−x +2y −s3 = 0 ∧

s1 ≥ 2 ∧
s2 ≥ 0 ∧
s3 ≥ 1 .

(5.7)

The new variables s1, . . . , sm are called the additional variables. The vari-
ables x1, . . . , xn in the original constraints are called problem variables.
Thus, we have n problem variables and m additional variables. As an opti-

�

�

�

�
n

mization of the procedure above, an additional variable is only introduced
if L′ is not already a problem variable or has been assigned an additional
variable previously.

5.2.2 Basics of the Simplex Algorithm

It is common and convenient to view linear constraint satisfaction problems
as geometrical problems. In geometrical terms, each variable corresponds to
a dimension, and each constraint defines a convex subspace: in particular,
inequalities define half-spaces and equalities define hyperplanes.3 The (closed)

3 A hyperplane in a d-dimensional space is a subspace with d − 1 dimensions. For
example, in two dimensions, a hyperplane is a straight line, and in one dimension
it is a point.
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subspace of satisfying assignments is defined by an intersection of half spaces
and hyperplanes, and forms a convex polytope. This is implied by the fact
that an intersection between convex subspaces is convex as well. A geometrical
representation of the original problem in Example 5.2 appears in Fig. 5.1.

1 2 3 4

1

2

(A) (B)

2x− y ≥ 0

−x + 2y ≥ 0

x + y ≥ 2

x

y

3

(C)

Fig. 5.1. A graphical representation of the problem in Example 5.2, projected on
x and y. The shaded region corresponds to the set of satisfying assignments. The
marked points (A), (B), and (C) illustrate the progress that the simplex algorithm
makes, as will be explained in the rest of this section

It is common to represent the coefficients in the input problem using an
m-by-(n + m) matrix A. The variables x1, . . . , xn, s1, . . . , sm are written as a

�

�

�

�
A

vector x. Following this notation, our problem is equivalent to the existence �

�

�

�
x

of a vector x such that

Ax = 0 and

m∧

i=1

li ≤ si ≤ ui , (5.8)

where li ∈ {−∞} ∪ Q is the lower bound of xi and ui ∈ {+∞} ∪ Q is the
upper bound of xi. The infinity values are for the case that a bound is not
set.

Example 5.3. We continue Example 5.2. Using the variable ordering x, y,
s1, s2, s3, a matrix representation for the equality constraints in (5.7) is

⎛
⎝

1 1 −1 0 0
2 −1 0 −1 0
−1 2 0 0 −1

⎞
⎠ . (5.9)

Note that a large portion of the matrix in Example 5.3 is very regular: the
columns that are added for the additional variables s1, . . . , sm correspond to



116 5 Linear Arithmetic

an m-by-m diagonal matrix, where the diagonal coefficients are −1. This is a
direct consequence of using the general form.

While the matrix A changes as the algorithm progresses, the number of
columns of this kind is never reduced. The set of m variables corresponding to
these columns are called the basic variables and denoted by B. They are also
called the dependent variables, as their values are determined by those of the
nonbasic variables. The nonbasic variables are denoted by N . It is convenient

�

�

�

�
B,N

to store and manipulate a representation of A called the tableau, which is
simply A without the diagonal submatrix. The tableau is thus an m-by-n
matrix, where the columns correspond to the nonbasic variables, and each
row is associated with a basic variable – the same basic variable that has a
“−1” entry at that row in the diagonal sub-matrix in A. Thus, the information
originally stored in the diagonal matrix is now represented by the variables
labeling the rows.

Example 5.4. We continue our running example. The tableau and the bounds
for Example 5.2 are:

x y

s1 1 1

s2 2 −1

s3 −1 2

2 ≤ s1

0 ≤ s2

1 ≤ s3

The tableau is simply a different representation of A, since Ax = 0 can be
rewritten into ∧

xi∈B

(
xi =

∑

xj∈N

aijxj

)
. (5.10)

When written in the form of a matrix, the sums on the right-hand side of
(5.10) correspond exactly to the tableau.

5.2.3 Simplex with Upper and Lower Bounds

The general simplex algorithm maintains, in addition to the tableau, an as-
signment α : B ∪ N −→ Q. The algorithm initializes its data structures as

�

�

�

�
α

follows:

• The set of basic variables B is the set of additional variables.
• The set of nonbasic variables N is the set of problem variables.
• For any xi with i ∈ {1, . . . , n + m}, α(xi) = 0.

If the initial assignment of zero to all variables (i.e., the origin) satisfies
all upper and lower bounds of the basic variables, then the formula can be
declared satisfiable (recall that initially the nonbasic variables do not have
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�

�

�

�

Algorithm 5.2.1: General-Simplex

Input: A linear system of constraints S
Output: “Satisfiable” if the system is satisfiable, “Unsatisfiable” oth-

erwise

1. Transform the system into the general form

Ax = 0 and
m∧

i=1

li ≤ si ≤ ui .

2. Set B to be the set of additional variables s1, . . . , sm.
3. Construct the tableau for A.
4. Determine a fixed order on the variables.
5. If there is no basic variable that violates its bounds, return “Satisfiable”.

Otherwise, let xi be the first basic variable in the order that violates its
bounds.

6. Search for the first suitable nonbasic variable xj in the order for pivoting
with xi. If there is no such variable, return “Unsatisfiable”.

7. Perform the pivot operation on xi and xj .
8. Go to step 5.

explicit bounds). Otherwise, the algorithm begins a process of changing this
assignment.

Algorithm 5.2.1 summarizes the steps of the general simplex procedure.
The algorithm maintains two invariants:

• In-1. Ax = 0
• In-2. The values of the nonbasic variables are within their bounds:

∀xj ∈ N . lj ≤ α(xj) ≤ uj . (5.11)

Clearly, these invariants hold initially since all the variables in x are set to 0,
and the nonbasic variables have no bounds.

The main loop of the algorithm checks if there exists a basic variable
that violates its bounds. If there is no such variable, then both the basic
and nonbasic variables satisfy their bounds. Owing to invariant In-1, this
means that the current assignment α satisfies (5.8), and the algorithm returns
“Satisfiable”.

Otherwise, let xi be a basic variable that violates its bounds, and assume,
without loss of generality, that α(xi) > ui, i.e., the upper bound of xi is
violated. How do we change the assignment to xi so it satisfies its bounds?
We need to find a way to reduce the value of xi. Recall how this value is
specified:
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xi =
∑

xj∈N

aijxj . (5.12)

The value of xi can be reduced by decreasing the value of a nonbasic variable
xj such that aij > 0 and its current assignment is higher than its lower bound
lj , or by increasing the value of a variable xj such that aij < 0 and its current
assignment is lower than its upper bound uj . A variable xj fulfilling one of
these conditions is said to be suitable. If there are no suitable variables, then
the problem is unsatisfiable and the algorithm terminates.

Let θ denote by how much we have to increase (or decrease) α(xj) in order
�

�

�

�
θ

to meet xi’s upper bound:

θ
.
=

ui − α(xi)

aij

. (5.13)

Increasing (or decreasing) xj by θ puts xi within its bounds. On the other hand
xj does not necessarily satisfy its bounds anymore, and hence may violate the
invariant In-2. We therefore swap xi and xj in the tableau, i.e., make xi

nonbasic and xj basic. This requires a transformation of the tableau, which
is called the pivot operation. The pivot operation is repeated until either a
satisfying assignment is found, or the system is determined to be unsatisfiable.

The Pivot Operation

Suppose we want to swap xi with xj . We will need the following definition:

Definition 5.5 (pivot element, column and row). Given two variables
xi and xj, the coefficient aij is called the pivot element. The column of xj is
called the pivot column. The row i is called the pivot row.

A precondition for swapping two variables xi and xj is that their pivot element
is nonzero, i.e., aij �= 0. The pivot operation (or pivoting) is performed as
follows:

1. Solve row i for xj .
2. For all rows l �= i, eliminate xj by using the equality for xj obtained from

row i.

The reader may observe that the pivot operation is also the basic operation
in the well-known Gaussian variable elimination procedure.

Example 5.6. We continue our running example. As described above, we
initialize α(xi) = 0. This corresponds to point (A) in Fig. 5.1. Recall the
tableau and the bounds:

x y

s1 1 1

s2 2 −1

s3 −1 2

2 ≤ s1

0 ≤ s2

1 ≤ s3
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The lower bound of s1 is 2, which is violated. The nonbasic variable that is
the lowest in the ordering is x. The variable x has a positive coefficient, but
no upper bound, and is therefore suitable for the pivot operation. We need to
increase s1 by 2 in order to meet the lower bound, which means that x has to
increase by 2 as well (θ = 2). The first step of the pivot operation is to solve
the row of s1 for x:

s1 = x + y ⇐⇒ x = s1 − y . (5.14)

This equality is now used to replace x in the other two rows:

s2 = 2(s1 − y)− y ⇐⇒ s2 = 2s1 − 3y (5.15)

s3 = −(s1 − y) + 2y ⇐⇒ s3 = −s1 + 3y (5.16)

Written as a tableau, the result of the pivot operation is:

s1 y

x 1 −1

s2 2 −3

s3 −1 3

α(x) = 2
α(y) = 0
α(s1) = 2
α(s2) = 4
α(s3) = −2

This new state corresponds to point (B) in Fig. 5.1.
The lower bound of s3 is violated; this is the next basic variable that is

selected. The only suitable variable for pivoting is y. We need to add 3 to s3

in order to meet the lower bound. This translates into

θ =
1− (−2)

3
= 1 . (5.17)

After performing the pivot operation with s3 and y, the final tableau is:

s1 s3

x 2/3 −1/3

s2 1 −1

y 1/3 1/3

α(x) = 1
α(y) = 1
α(s1) = 2
α(s2) = 1
α(s3) = 1

This assignment α satisfies the bounds, and thus {x �→ 1, y �→ 1} is a satisfying
assignment. It corresponds to point (C) in Fig. 5.1.

Selecting the pivot element according to a fixed ordering for the basic and
nonbasic variable ensures that no set of basic variables is ever repeated, and
hence guarantees termination (no cycling can occur). For a detailed proof
see [71]. This way of selecting a pivot element is called Bland’s rule.
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5.2.4 Incremental Problems

Decision problems are often constructed in an incremental manner, that
is, the formula is strengthened with additional conjuncts. This can make a
once satisfiable formula unsatisfiable. One scenario in which an incremental
decision procedure is useful is the DPLL(T) framework, which we study in
Chap. 11.

The general simplex algorithm is well-suited for incremental problems.
First, notice that any constraint can be disabled by removing its correspond-
ing upper and lower bounds. The equality in the tableau is afterwards redun-
dant, but will not render a satisfiable formula unsatisfiable. Second, the pivot
operation performed on the tableau is an equivalence transformation, i.e., it
preserves the set of solutions. We can therefore start the procedure with the
tableau we have obtained from the previous set of bounds.

The addition of upper and lower bounds is implemented as follows:

• If a bound for a nonbasic variable was added, update the values of the
nonbasic variables according to the tableau to restore In-2.

• Call Algorithm 5.2.1 to determine if the new problem is satisfiable. Start
with step 5.

Furthermore, it is often desirable to remove constraints after they have
been added. This is also relevant in the context of DPLL(T) because this al-
gorithm activates and deactivates constraints. Normally constraints (or rather
bounds) are removed when the current set of constraints is unsatisfiable. After
removing a constraint the assignment has to be restored to a point at which it
satisfied the two invariants of the general simplex algorithm. This can be done
by simply restoring the assignment α to the last known satisfying assignment.
There is no need to modify the tableau.

5.3 The Branch and Bound Method

Branch and Bound is a widely used method for solving integer linear pro-
grams. As in the case of the simplex algorithm, Branch and Bound was
developed for solving the optimization problem, but the description here fo-
cuses on an adaptation of this algorithm to the decision problem.

The integer linear systems considered here have the same form as described
in Sect. 5.2, with the additional requirement that the value of any variable in
a satisfying assignment must be drawn from the set of integers. Observe that
it is easy to support strict inequalities simply by adding 1 to or subtracting 1
from the constant on the right-hand side.

Definition 5.7 (relaxed problem). Given an integer linear system S, its
relaxation is S without the integrality requirement (i.e., the variables are not
required to be integer).
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We denote the relaxed problem of S by relaxed(S). Assume the existence of
a procedure LPfeasible , which receives a linear system S as input, and returns
“Unsatisfiable” if S is unsatisfiable and a satisfying assignment otherwise.
LPfeasible can be implemented with, for example, a variation of General-
Simplex (Algorithm 5.2.1) that outputs a satisfying assignment if S is satis-
fiable. Using these notions, Algorithm 5.3.1 decides an integer linear system of
constraints (recall that only conjunctions of constraints are considered here).

�

�

�

�

Algorithm 5.3.1: Feasibility-Branch-and-Bound

Input: An integer linear system S
Output: “Satisfiable” if S is satisfiable, “Unsatisfiable” otherwise

1. procedure Search-integral-solution(S)
2. res = LPfeasible (relaxed(S));
3. if res = “Unsatisfiable” then return ; ⊲ prune branch
4. else
5. if res is integral then ⊲ integer solution found

abort(“Satisfiable”);
6. else
7. Select a variable v that is assigned a nonintegral value r;
8. Search-integral-solution (S ∪ (v ≤ ⌊r⌋));
9. Search-integral-solution (S ∪ (v ≥ ⌈r⌉));

10. ⊲ no integer solution in this branch

11. procedure Feasibility-Branch-and-Bound(S)
12. Search-integral-solution(S);
13. return (“Unsatisfiable”);

The idea of the algorithm is simple: it solves the relaxed problem with
LPfeasible ; if the relaxed problem is unsatisfiable, it backtracks because there
is also no integer solution in this branch. If, on the other hand, the relaxed
problem is satisfiable and the solution returned by LPfeasible happens to be
integral, it terminates – a satisfying integral solution has been found. Oth-
erwise, the problem is split into two subproblems, which are then processed
with a recursive call. The nature of this split is best illustrated by an example.

Example 5.8. Let x1, . . . , x4 be the variables of S. Assume that LPfeasible

returns the solution
(1, 0.7, 2.5, 3) (5.18)

in line 2. In line 7, Search-integral-solution chooses between x2 and x3,
which are the variables that were assigned a nonintegral value. Suppose that
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x2 is chosen. In line 8, S (the linear system solved at the current recursion
level) is then augmented with the constraint

x2 ≤ 0 (5.19)

and sent for solving at a deeper recursion level. If no solution is found in this
branch, S is augmented instead with

x2 ≥ 1 (5.20)

and, once again, is sent to a deeper recursion level. If both these calls return,
this implies that S has no satisfying solution, and hence the procedure re-
turns (backtracks). Note that returning from the initial recursion level causes
the calling function Feasibility-Branch-and-Bound to return “Unsatisfi-
able”.

Algorithm 5.3.1 is not complete: there are cases for which it will branch
forever. As noted in [71], the system 1 ≤ 3x − 3y ≤ 2, for example, has no
integer solutions but unbounded real solutions, and causes the basic Branch
and Bound algorithm to loop forever. In order to make the algorithm complete,
it is necessary to rely on the small-model property that such formulas have (we
used this property earlier in Sect. 4.5). Recall that this means that if there is
a satisfying solution, then there is also such a solution within a finite bound,
which, for this theory, is also computable. This means that once we have
computed this bound on the domain of each variable, we can stop searching
for a solution once we have passed it. A detailed study of this bound in the
context of optimization problems can be found in [139]. The same bounds are
applicable to the feasibility problem as well. Briefly, it was shown in [139] that
given an integer linear system S with an M ×N coefficient matrix A, then if
there is a solution to S, then one of the extreme points of the convex hull of
S is also a solution, and any such solution x0 is bounded as follows:

x0
j ≤ ((M + N) ·N · θ)N for j = 1, . . . , N , (5.21)

where θ is the maximal element in the coefficient matrix A or in the vector b.
Thus, (5.21) gives us a bound on each of the N variables, which, by adding it
as an explicit constraint, forces termination.

Finally, let us mention that Branch and Bound can be extended in a
straightforward way to handle the case in which some of the variables are
integers while the others are real. In the context of optimization problems,
this problem is known by the name mixed integer programming.

5.3.1 Cutting-Planes

Cutting-planes are constraints that are added to a linear system that remove
only noninteger solutions; that is, all satisfying integer solutions, if they exist,
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Aside: Branch and Bound for Integer Linear Programs
When Branch and Bound is used for solving an optimization problem, it
becomes somewhat more complicated. In particular, there are various pruning
rules based on the value of the current objective function (a branch is pruned
if it is identified that it cannot contain a solution better than what is already
at hand from another branch). There are also various heuristics for choosing
the variable on which to split and the first branch to be explored.

satisfying assignments

Fig. 5.2. The dots represent integer solutions. The thin dotted line represents a
cutting-plane – a constraint that does not remove any integral solution

remain satisfying, as demonstrated in Fig. 5.2. These new constraints improve
the tightness of the relaxation in the process of solving integer linear systems.

Here, we describe a family of cutting planes called Gomory cuts. We first
illustrate this technique with an example, and then generalize it.

Suppose that our problem includes the integer variables x1, . . . , x3, and
the lower bounds 1 ≤ x1 and 0.5 ≤ x2. Further, suppose that the final tableau
of the general simplex algorithm includes the constraint

x3 = 0.5x1 + 2.5x2 , (5.22)

and that the solution α is {x3 �→ 1.75, x1 �→ 1, x2 �→ 0.5}, which, of course,
satisfies (5.22). Subtracting these values from (5.22) gives us

x3 − 1.75 = 0.5(x1 − 1) + 2.5(x2 − 0.5) . (5.23)

We now wish to rewrite this equation so the left-hand side is an integer:

x3 − 1 = 0.75 + 0.5(x1 − 1) + 2.5(x2 − 0.5) . (5.24)
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The two right-most terms must be positive because 1 and 0.5 are the lower
bounds of x1 and x2, respectively. Since the right-hand side must add up to
an integer as well, this implies that

0.75 + 0.5(x1 − 1) + 2.5(x2 − 0.5) ≥ 1 . (5.25)

Note, however, that this constraint is unsatisfied by α since by construction
all the elements on the left other than the fraction 0.75 are equal to zero under
α. This means that adding this constraint to the relaxed system will rule out
this solution. On the other hand since it is implied by the integer system of
constraints, it cannot remove any integer solution.

Let us generalize this example into a recipe for generating such cutting
planes. The generalization refers also to the case of having variables assigned
their upper bounds, and both negative and positive coefficients. In order to
derive a Gomory cut from a constraint, the constraint has to satisfy two
conditions: First, the assignment to the basic variable has to be fractional;
Second, the assignments to all the nonbasic variables have to correspond to
one of their bounds. The following recipe, which relies on these conditions, is
based on a report by Dutertre and de Moura [71].

Consider the i-th constraint:

xi =
∑

xj∈N

aijxj , (5.26)

where xi ∈ B. Let α be the assignment returned by the general simplex
algorithm. Thus,

α(xi) =
∑

xj∈N

aijα(xj) . (5.27)

We now partition the nonbasic variables to those that are currently assigned
their lower bound and those that are currently assigned their upper bound:

J = {j | xj ∈ N ∧ α(xj) = lj}
K = {j | xj ∈ N ∧ α(xj) = uj} .

(5.28)

Subtracting (5.27) from (5.26) taking the partition into account yields

xi − α(xi) =
∑

j∈J

aij(xj − lj)−
∑

j∈K

aij(uj − xj) . (5.29)

Let f0 = α(xi)− ⌊α(xi)⌋. Since we assumed that α(xi) is not an integer then
0 < f0 < 1. We can now rewrite (5.29) as

xi − ⌊α(xi)⌋ = f0 +
∑

j∈J

aij(xj − lj)−
∑

j∈K

aij(uj − xj) . (5.30)

Note that the left-hand side is an integer. We now consider two cases.
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• If
∑

j∈J aij(xj − lj) −
∑

j∈K aij(uj − xj) > 0 then, since the right-hand
side must be an integer,

f0 +
∑

j∈J

aij(xj − lj)−
∑

j∈K

aij(uj − xj) ≥ 1 . (5.31)

We now split J and K as follows:

J+ = {j | j ∈ J ∧ aij > 0}
J− = {j | j ∈ J ∧ aij < 0}
K+ = {j | j ∈ K ∧ aij > 0}
J− = {j | j ∈ K ∧ aij < 0}

(5.32)

Gathering only the positive elements in the left-hand side of (5.31) gives
us:

∑

j∈J+

aij(xj − lj)−
∑

j∈K−

aij(uj − xj) ≥ 1− f0 , (5.33)

or, equivalently,
∑

j∈J+

aij

1− f0
(xj − lj)−

∑

j∈K−

aij

1− f0
(uj − xj) ≥ 1 . (5.34)

• If
∑

j∈J aij(xj − lj)−
∑

j∈K aij(uj − xj) ≤ 0 then again, since the right-
hand side must be an integer,

f0 +
∑

j∈J

aij(xj − lj)−
∑

j∈K

aij(uj − xj) ≤ 0 . (5.35)

Eq. (5.35) implies that

∑

j∈J−

aij(xj − lj)−
∑

j∈K+

aij(uj − xj) ≤ −f0 . (5.36)

Dividing by −f0 gives us

−
∑

j∈J−

aij

f0
(xj − lj) +

∑

j∈K+

aij

f0
(uj − xj) ≥ 1 . (5.37)

Note that the left-hand side of both (5.34) and (5.37) is greater than zero.
Therefore these two equations imply

∑

j∈J+

aij

1− f0
(xj − lj)−

∑

j∈J−

aij

f0
(xj − lj)

+
∑

j∈K+

aij

f0
(uj − xj)−

∑

j∈K−

aij

1− f0
(uj − xj) ≥ 1 . (5.38)

Since each of the elements on the left-hand side is equal to zero under the
current assignment α, this assignment α is ruled out by the new constraint. In
other words, the solution to the linear problem augmented with the constraint
is guaranteed to be different from the previous one.
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5.4 Fourier–Motzkin Variable Elimination

5.4.1 Equality Constraints

Similarly to the simplex method, the Fourier–Motzkin variable elimination
algorithm takes a conjunction of linear constraints over real variables. Let m
denote the number of such constraints, and let x1, . . . , xn denote the variables
used by these constraints.

As a first step, equality constraints of the following form are eliminated:

n∑

j=1

ai,j · xj = bi . (5.39)

We choose a variable xj that has a nonzero coefficient ai,j in an equality
constraint i. Without loss of generality, we assume that xn is the variable
that is to be eliminated. The constraint (5.39) can be rewritten as

xn =
bi

ai,n

−
n−1∑

j=1

ai,j

ai,n

· xj . (5.40)

Now we substitute the right-hand side of (5.40) for xn into all the other
constraints, and remove constraint i. This is iterated until all equalities are
removed.

We are left with a system of inequalities of the form

m∧

i=1

n∑

j=1

ai,jxj ≤ bi . (5.41)

5.4.2 Variable Elimination

The basic idea of the variable elimination algorithm is to heuristically choose
a variable and then to eliminate it by projecting its constraints onto the rest
of the system, resulting in new constraints.

Example 5.9. Consider Fig. 5.3(a): the constraints

0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
3

4
≤ z ≤ 1 (5.42)

form a cuboid. Projecting these constraints onto the x and y axes, and thereby
eliminating z, results in a square which is given by the constraints

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 . (5.43)

Figure 5.3(b) shows a triangle formed by the constraints
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Fig. 5.3. Projection of constraints: (a) a cuboid is projected onto the x and y axes;
(b) a triangle is projected onto the x axis

x ≤ y + 10, y ≤ 15, y ≥ −x + 20 . (5.44)

The projection of the triangle onto the x axis is a line given by the constraints

5 ≤ x ≤ 25 . (5.45)

Thus, the projection forms a new problem with one variable fewer, but possibly
more constraints. This is done iteratively until all variables but one have been
eliminated. The problem with one variable is trivially decidable.

The order in which the variables are eliminated may be predetermined,
or adjusted dynamically to the current set of constraints. There are various
heuristics for choosing the elimination order. A standard greedy heuristic gives
priority to variables that produce fewer new constraints when eliminated.

Once again, assume that xn is the variable chosen to be eliminated. The
constraints are partitioned according to the coefficient of xn. Consider the
constraint with index i:

n∑

j=1

ai,j · xj ≤ bi . (5.46)

By splitting the sum, (5.46) can be rewritten into

ai,n · xn ≤ bi −
n−1∑

j=1

ai,j · xj . (5.47)

If ai,n is zero, the constraint can be disregarded when we are eliminating xn.
Otherwise, we divide by ai,n. If ai,n is positive, we obtain

xn ≤
bi

ai,n

−
n−1∑

j=1

ai,j

ai,n

· xj . (5.48)



128 5 Linear Arithmetic

Thus, if ai,n > 0, the constraint is an upper bound on xn. If ai,n < 0, the
constraint is a lower bound. We denote the right-hand side of (5.48) by βi.

�

�

�

�
βi

Unbounded Variables

It is possible that a variable is not bounded both ways, i.e., it has either only
upper bounds or only lower bounds. Such variables are called unbounded
variables. Unbounded variables can be simply removed from the system to-
gether with all constraints that use them. Removing these constraints can
make other variables unbounded. Thus, this simplification stage iterates until
no such variables remain.

Bounded Variables

If xn has both an upper and a lower bound, the algorithm enumerates all
pairs of lower and upper bounds. Let u ∈ {1, . . . , m} denote the index of an
upper-bound constraint, and l ∈ {1, . . . , m} denote the index of a lower-bound
constraint for xn, where l �= u. For each such pair, we have

βl ≤ xn ≤ βu . (5.49)

The following new constraint is added:

βl ≤ βu . (5.50)

The Formula (5.50) may simplify to 0 ≤ bk, where bk is some constant smaller
than 0. In this case, the algorithm has found a conflicting pair of constraints
and concludes that the problem is unsatisfiable. Otherwise, all constraints
that involve xn are removed. The new problem is solved recursively as before.

Example 5.10. Consider the following set of constraints:

x1 −x2 ≤ 0
x1 −x3 ≤ 0

−x1 +x2 +2x3 ≤ 0
−x3 ≤ −1 .

(5.51)

Suppose we decide to eliminate the variable x1 first. There are two upper
bounds on x1, namely x1 ≤ x2 and x1 ≤ x3, and one lower bound, which is
x2 + 2x3 ≤ x1.

Using x1 ≤ x2 as the upper bound, we obtain a new constraint 2x3 ≤ 0,
and using x1 ≤ x3 as the upper bound, we obtain a new constraint x2+x3 ≤ 0.
Constraints involving x1 are removed from the problem, which results in the
following new set:

2x3 ≤ 0
x2 +x3 ≤ 0
−x3 ≤ −1 .

(5.52)
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Next, observe that x2 is unbounded (as it has no lower bound), and hence
the second constraint can be eliminated, which simplifies the formula. We
therefore progress by eliminating x2 and all the constraints that contain it:

2x3 ≤ 0
−x3 ≤ −1 .

(5.53)

Only the variable x3 remains, with a lower and an upper bound. Combining
the two into a new constraint results in 1 ≤ 0, which is a contradiction. Thus,
the system is unsatisfiable.

The simplex method in its basic form, as described in Sect. 5.2, allows only
nonstrict (≤) inequalities.4 The Fourier–Motzkin method, on the other hand,
can easily be extended to handle a combination of strict (<) and nonstrict
inequalities: if either the lower or the upper bound is a strict inequality, then
so is the resulting constraint.

5.4.3 Complexity

In each iteration, the number of constraints can increase in the worst case
from m to m2/4, which results overall in m2n

/4n constraints. Thus, Fourier–
Motzkin variable elimination is only suitable for a relatively small set of con-
straints and a small number of variables.

5.5 The Omega Test

5.5.1 Problem Description

The Omega test is an algorithm to decide the satisfiability of a conjunction
of linear constraints over integer variables. Each conjunct is assumed to be
either an equality of the form

n∑

i=1

aixi = b (5.54)

or a nonstrict inequality of the form

n∑

i=1

aixi ≤ b . (5.55)

The coefficients ai are assumed to be integers; if they are not, by making
use of the assumption that the coefficients are rational, the problem can be
transformed into one with integer coefficients by multiplying the constraints

4 There are extensions of Simplex to strict inequalities. See, for example, [70].



130 5 Linear Arithmetic

by the least common multiple of the denominators. In Sect. 5.6, we show how
strict inequalities can be transformed into nonstrict inequalities.

The runtime of the Omega test depends on the size of the coefficients ai. It
is therefore desirable to transform the constraints such that small coefficients
are obtained. This can be done by dividing the coefficients a1, . . . , an of each
constraint by their greatest common divisor g. The resulting constraint is
called normalized. If the constraint is an equality constraint, this results in

n∑

i=1

ai

g
xi =

b

g
. (5.56)

If g does not divide b exactly, the system is unsatisfiable. If the constraint is
an inequality, one can tighten the constraint by rounding down the constant:

n∑

i=1

ai

g
xi ≤

⌊
b

g

⌋
. (5.57)

More simplifications of this kind are described in Sect. 5.6.

Example 5.11. The equality 3x + 3y = 2 can be normalized to x + y = 2/3,
which is unsatisfiable. The constraint 8x+6y ≤ 0 can be normalized to obtain
4x + 3y ≤ 0. The constraint 1 ≤ 4y can be tightened to obtain 1 ≤ y.

The Omega test is a variant of the Fourier–Motzkin variable elimination
algorithm (Sect. 5.4). As in the case of that algorithm, equality and inequality
constraints are treated separately; all equality constraints are removed before
inequalities are considered.

5.5.2 Equality Constraints

In order to eliminate an equality of the form of (5.54), we first check if there
is a variable xj with a coefficient 1 or −1, i.e., |aj | = 1. If yes, we transform
the constraint as follows. Without loss of generality, assume j = n. We isolate
xn:

xn =
b

an

−
n−1∑

i=1

ai

an

xi . (5.58)

The variable xn can now be substituted by the right-hand side of (5.58) in all
constraints.

If there is no variable with a coefficient 1 or −1, we cannot simply divide
by the coefficient, as this would result in nonintegral coefficients. Instead, the
algorithm proceeds as follows: it determines the variable that has the nonzero
coefficient with the smallest absolute value. Assume again that xn is chosen,
and that an > 0. The Omega test transforms the constraints iteratively until
some coefficient becomes 1 or −1. The variable with that coefficient can then
be eliminated as above.
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For this transformation, a new binary operator m̂od , called symmetric

�

�

�

�
a m̂od b

modulo, is defined as follows:

a m̂od b
.
= a− b ·

⌊
a

b
+

1

2

⌋
. (5.59)

The symmetric modulo operator is very similar to the usual modular arith-

metic operator. If a mod b < b/2, then a m̂od b = a mod b. If a mod b is greater
than or equal to b/2, b is deducted, and thus

a m̂od b =

{
a mod b : a mod b < b/2
(a mod b)− b : otherwise .

(5.60)

We leave the proof of this equivalence as an exercise (see Problem 5.12).
Our goal is to derive a term that can replace xn. For this purpose, we

define m
.
= an + 1, introduce a new variable σ, and add the following new

constraint:
n∑

i=1

(ai m̂od m)xi = mσ + b m̂od m . (5.61)

We split the sum on the left-hand side to obtain

(an m̂od m)xn = mσ + b m̂od m−
n−1∑

i=1

(ai m̂od m)xi . (5.62)

Since an m̂od m = −1 (see Problem 5.14), this simplifies to:

xn = −mσ − b m̂od m +

n−1∑

i=1

(ai m̂od m)xi . (5.63)

The right-hand side of (5.63) is used to replace xn in all constraints. Any
equality from the original problem (5.54) is changed as follows:

n−1∑

i=1

aixi + an

(
−mσ − b m̂od m +

n−1∑

i=1

(ai m̂od m)xi

)
= b , (5.64)

which can be rewritten as

−anmσ +

n−1∑

i=1

(ai + an(ai m̂od m))xi = b + an(b m̂od m) . (5.65)

Since an = m− 1, this simplifies to

−anmσ +
∑n−1

i=1 ((ai − (ai m̂od m)) + m(ai m̂od m))xi =

b− (b m̂od m) + m(b m̂od m) .
(5.66)
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Note that ai − (ai m̂od m) is equal to m⌊ai/m + 1/2⌋, and thus all terms are
divisible by m. Dividing (5.66) by m results in

−anσ+
n−1∑

i=1

(⌊ai/m+1/2⌋+(ai m̂od m))xi = ⌊b/m+1/2⌋+(b m̂od m) . (5.67)

The absolute value of the coefficient of σ is the same as the absolute value
of the original coefficient an, and it seems that nothing has been gained by
this substitution. However, observe that the coefficient of xi can be bounded
as follows (see Problem 5.13):

|⌊ai/m + 1/2⌋+ (ai m̂od m)| ≤
5

6
|ai| . (5.68)

Thus, the absolute values of the coefficients in the equality are strictly smaller
than their previous values. As the coefficients are always integral, repeated
application of equality elimination eventually generates a coefficient of 1 or −1
on some variable. This variable can then be eliminated directly, as described
earlier (see (5.58)).

Example 5.12. Consider the following formula:

−3x1 +2x2 = 0
3x1 +4x2 = 3 .

(5.69)

The variable x2 has the coefficient with the smallest absolute value (a2 = 2).
Thus, m = a2 + 1 = 3, and we add the following constraint (see (5.61)):

(−3 m̂od 3)x1 + (2 m̂od 3)x2 = 3σ . (5.70)

This simplifies to x2 = −3σ. Substituting −3σ for x2 results in the following
problem:

−3x1 −6σ = 0
3x1 −12σ = 3 .

(5.71)

Division by m results in
−x1 −2σ = 0

x1 −4σ = 1 .
(5.72)

As expected, the coefficient of x1 has decreased. We can now substitute x1 by
4σ + 1, and obtain −6σ = 1, which is unsatisfiable.

5.5.3 Inequality Constraints

Once all equalities have been eliminated, the algorithm attempts to find a
solution for the remaining inequalities. The control flow of Algorithm 5.5.1 is
illustrated in Fig. 5.4. As in the Fourier–Motzkin procedure, the first step is
to choose a variable to be eliminated. Subsequently, the three subprocedures
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Real-Shadow, Dark-Shadow, and Gray-Shadow produce new constraint sets,
which are solved recursively.

Note that many of the subproblems generated by the recursion are actu-
ally identical. An efficient implementation uses a hash table that stores the
solutions of previously solved problems.

�

�

�

�

Algorithm 5.5.1: Omega-Test

Input: A conjunction of constraints C
Output: “Satisfiable” if C is satisfiable, and “Unsatisfiable” otherwise

1. if C only contains one variable then

2. Solve and return result; ⊲ (solving this problem is trivial)
3.
4. Otherwise, choose a variable v that occurs in C;
5. CR := Real-Shadow(C, v);
6. if Omega-Test(CR) = “Unsatisfiable” then ⊲ Recursive call
7. return “Unsatisfiable”;
8.
9. CD := Dark-Shadow(C, v);

10. if Omega-Test(CD) = “Satisfiable” then ⊲ Recursive call
11. return “Satisfiable”;
12.
13. if CR = CD then ⊲ Exact projection?
14. return “Unsatisfiable”;
15.
16. C1

G, . . . , Cn
G := Gray-Shadow(C, v);

17. for all i ∈ {1, . . . , n} do

18. if Omega-Test(Ci
G) = “Satisfiable” then ⊲ Recursive call

19. return “Satisfiable”;
20.
21. return “Unsatisfiable”;

Checking the Real Shadow

Even though the Omega test is concerned with constraints over integers, the
first step is to check if there are integer solutions in the relaxed problem,
which is called the real shadow. The real shadow is the same projection that
the Fourier–Motzkin procedure uses. The Omega test is then called recursively
to check if the projection contains an integer. If there is no such integer, then
there is no integer solution to the original system either, and the algorithm
concludes that the system is unsatisfiable.
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Fig. 5.4. Overview of the Omega test

Assume that the variable to be eliminated is denoted by z. As in the case
of the Fourier–Motzkin procedure, all pairs of lower and upper bounds have
to be considered. Variables that are not bounded both ways can be removed,
together with all constraints that contain them.

Let β ≤ bz and cz ≤ γ be constraints, where c and b are positive integer
constants and γ and β denote the remaining linear expressions. Consequently,
β/b is a lower bound on z, and γ/c is an upper bound on z. The new constraint
is obtained by multiplying the lower bound by c and the upper bound by b:

Lower bound Upper bound

β ≤ bz cz ≤ γ
cβ ≤ cbz cbz ≤ bγ

(5.73)

The existence of such a variable z implies

cβ ≤ bγ . (5.74)

Example 5.13. Consider the following set of constraints:

2y ≤ x
8y ≥ 2 +x
2y ≤ 3 −x .

(5.75)

The triangle spanned by these constraints is depicted in Fig. 5.5. Assume that
we decide to eliminate x. In this case, the combination of the two constraints
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2y ≤ x and 8y ≥ 2 + x results in 8y − 2 ≥ 2y, which simplifies to y ≥ 1/3.
The two constraints 2y ≤ x and 2y ≤ 3− x combine into 2y ≤ 3− 2y, which
simplifies to y ≤ 3/4. Thus, 1/3 ≤ y ≤ 3/4 must hold, which has no integer
solution. The set of constraints is therefore unsatisfiable.
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Fig. 5.5. Computing the real shadow: eliminating x

The converse of this observation does not hold, i.e., if we find an integer
solution within the real shadow, this does not guarantee that the original
set of constraints has an integer solution. This is illustrated by the following
example.
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Fig. 5.6. Computing the real shadow: eliminating y

Example 5.14. Consider the same set of constraints as in Example 5.13.
This time, eliminate y instead of x. This projection is depicted in Fig. 5.6.
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We obtain 2/3 ≤ x ≤ 2, which has two integer solutions. The triangle, on the
other hand, contains no integer solution.

The real shadow is an overapproximating projection, as it contains more
solutions than does the original problem. The next step in the Omega test is
to compute an underapproximating projection, i.e., if that projection contains
an integer solution, so does the original problem. This projection is called the
dark shadow.

Checking the Dark Shadow

The name dark shadow is motivated by optics. Assume that the object we
are projecting is partially translucent. Places that are “thicker” will project
a darker shadow. In particular, a dark area in the shadow where the object is
thicker than 1 must have at least one integer above it.

After the first phase of the algorithm, we know that there is a solution
to the real shadow, i.e., cβ ≤ bγ. We now aim at determining if there is an
integer z such that cβ ≤ cbz ≤ bγ, which is equivalent to

∃z ∈ Z.
β

b
≤ z ≤

γ

c
. (5.76)

Assume that (5.76) does not hold. Let i denote ⌊β/b⌋, i.e., the largest integer
that is smaller than β/b. Since we have assumed that there is no integer
between β/b and γ/c,

i <
β

b
≤

γ

c
< i + 1 (5.77)

holds. This situation is illustrated in Fig. 5.7.

︸ ︷︷ ︸
i + 1γ

c

β

b
i
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≥ 1

c
≥ 1

b

Fig. 5.7. Computing the dark shadow

Since β/b and γ/c are not integers themselves, the distances from these
points to the closest integer are greater than the fractions 1/b and 1/c, respec-
tively:

β

b
− i ≥

1

b
(5.78)

i + 1−
γ

c
≥

1

c
. (5.79)
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The proof is left as an exercise (Problem 5.11). By summing (5.78) and (5.79),
we obtain

β

b
+ 1−

γ

c
≥

1

c
+

1

b
, (5.80)

which is equivalent to

cβ − bγ ≥ −cb + c + b . (5.81)

By multiplying this inequality by −1, we obtain

bγ − cβ ≤ cb− c− b . (5.82)

In order to show a contradiction to our assumption, we need to show the
negation of (5.82). Exploiting the fact that c, b are integers, the negation of
(5.82) is

bγ − cβ ≥ cb− c− b + 1 , (5.83)

or simply

bγ − cβ ≥ (c− 1)(b− 1) . (5.84)

Thus, if (5.84) holds, our assumption is wrong, which means that we have a
guarantee that there exists an integer solution.

Observe that if either c = 1 or b = 1, the formula (5.84) is identical to the
real shadow (5.74), i.e., the dark and real shadow are the same. In this case,
the projection is exact, and it is sufficient to check the real shadow. When
choosing variables to eliminate, preference should be given to variables that
result in an exact projection, that is, to variables with coefficient 1.

Checking the Gray Shadow

We know that any integer solution must also be in the real shadow. Let R
�

�

�

�
R

denote this area. Now assume that we have found no integer in the dark
shadow. Let D denote the area of the dark shadow.

�

�

�

�
D

Thus, if R and D do not coincide, there is only one remaining area in
which an integer solution can be found: an area around the dark shadow,
which, staying within the optical analogy, is called the gray shadow.

Any solution must satisfy

cβ ≤ cbz ≤ bγ . (5.85)

Furthermore, we already know that the dark shadow does not contain an
integer, and thus we can exclude this area from the search. Therefore, be-
sides (5.85), any solution has to satisfy (5.82):
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cβ ≤ cbz ≤ bγ ∧ bγ − cβ ≤ cb− c− b . (5.86)

This is equivalent to

cβ ≤ cbz ≤ bγ ∧ bγ ≤ cb− c− b + cβ , (5.87)

which implies
cβ ≤ cbz ≤ cb− c− b + cβ . (5.88)

Dividing by c, we obtain

β ≤ bz ≤ β +
cb− c− b

c
. (5.89)

The Omega test proceeds by simply trying possible values of bz between these
two bounds. Thus, a new constraint

bz = β + i (5.90)

is formed and combined with the original problem for each integer i in the
range 0, . . . , (cb − c − b)/c. If any one of the resulting new problems has a
solution, so does the original problem.

The number of subproblems can be reduced by determining the largest
coefficient c of z in any upper bound for z. The new constraints generated for
the other upper bounds are already covered by the constraints generated for
the upper bound with the largest c.

5.6 Preprocessing

In this section, we examine several simple preprocessing steps for both linear
and integer linear systems without objective functions. Preprocessing the set
of constraints can be done regardless of the decision procedure chosen.

5.6.1 Preprocessing of Linear Systems

Two simple preprocessing steps for linear systems are the following:

1. Consider the set of constraints

x1 + x2 ≤ 2, x1 ≤ 1, x2 ≤ 1 . (5.91)

The first constraint is redundant. In general, for a set:

S =

⎧
⎨
⎩a0x0 +

n∑

j=1

ajxj ≤ b, lj ≤ xj ≤ uj for j = 0, . . . , n

⎫
⎬
⎭ , (5.92)

the constraint
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a0x0 +

n∑

j=1

ajxj ≤ b (5.93)

is redundant if ∑

j|aj>0

ajuj +
∑

j|aj<0

aj lj ≤ b . (5.94)

To put this in words, a “≤” constraint in the above form is redundant if
assigning values equal to their upper bounds to all of its variables that
have a positive coefficient, and assigning values equal to their lower bounds
to all of its variables that have a negative coefficient, results in a value less
than or equal to b, the constant on the right-hand side of the inequality.

2. Consider the following set of constraints:

2x1 + x2 ≤ 2, x2 ≥ 4, x1 ≤ 3 . (5.95)

From the first and second constraints, x1 ≤ −1 can be derived, which
means that the bound x1 ≤ 3 can be tightened. In general, if a0 > 0, then

x0 ≤

⎛
⎝b−

∑

j|j>0,aj>0

aj lj −
∑

j|aj<0

ajuj

⎞
⎠ /a0 , (5.96)

and if a0 < 0, then

x0 ≥

⎛
⎝b−

∑

j|aj>0

aj lj −
∑

j|j>0,aj<0

ajuj

⎞
⎠ /a0 . (5.97)

5.6.2 Preprocessing of Integer Linear Systems

The following preprocessing steps are applicable to integer linear systems:

1. Multiply every constraint by the smallest common multiple of the coeffi-
cients and constants in this constraint, in order to obtain a system with
integer coefficients.5

2. After the previous preprocessing has been applied, strict inequalities can
be transformed into nonstrict inequalities as follows:

∑

1≤i≤n

aixi < b (5.98)

is replaced with ∑

1≤i≤n

aixi ≤ b− 1 . (5.99)

The case in which b is fractional is handled by the previous preprocessing
step.

5 This assumes that the coefficients and constants in the system are rational. The
case in which the coefficients can be nonrational is of little value and is rarely
considered in the literature.
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For the special case of 0–1 linear systems (integer linear systems in
which all the variables are constrained to be either 0 or 1), some preprocessing
steps are illustrated by the following examples:

1. Consider the constraint
5x1 − 3x2 ≤ 4 , (5.100)

from which we can conclude that

x1 = 1 =⇒ x2 = 1 . (5.101)

Hence, the constraint
x1 ≤ x2 (5.102)

can be added.
2. From

x1 + x2 ≤ 1, x2 ≥ 1 , (5.103)

we can conclude x1 = 0.

Generalization of these examples is left for Problem 5.8.

5.7 Difference Logic

5.7.1 Introduction

A popular fragment of linear arithmetic is called difference logic.

Definition 5.15 (difference logic). The syntax of a formula in difference
logic is defined by the following rules:

formula : formula ∧ formula | atom

atom : identifier − identifier op constant

op : ≤ | <

Here, we consider the case in which the variables are defined over Q, the
rationals. A similar definition exists for the case in which the variables are de-
fined over Z (see Problem 5.18). Solving both variants is polynomial, whereas,
recall, linear arithmetic over Z is NP-complete.

Some other convenient operands can be modeled with the grammar above:

• x− y = c is the same as x− y ≤ c ∧ y − x ≤ −c.
• x− y ≥ c is the same as y − x ≤ −c.
• x− y > c is the same as y − x < −c.
• A constraint with one variable such as x < 5 can be rewritten as x−x0 < 5,

where x0 is a special variable not used so far in the formula, called the
“zero variable”. In any satisfying assignment, its value must be 0.
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As an example,
x < y + 5 ∧ y ≤ 4 ∧ x = z − 1 (5.104)

can be rewritten in difference logic as

x− y < 5 ∧ y − x0 ≤ 4 ∧ x− z ≤ −1 ∧ z − x ≤ 1. (5.105)

A more important variant, however, is one in which an arbitrary Boolean
structure is permitted. We describe one application of this variant by the
following example.

Example 5.16. We are given a finite set of n jobs, each of which consists of
a chain of operations. There is a finite set of m machines, each of which can
handle at most one operation at a time. Each operation needs to be performed
during an uninterrupted period of given length on a given machine. The job-
shop scheduling problem is to find a schedule, that is, an allocation of the
operations to time intervals on the machines that has a minimal total length.

More formally, given a set of machines

M = {m1, . . . , mm} , (5.106)

job J i with i ∈ {1, . . . , n} is a sequence of ni pairs of the form (machine,
duration):

J i = (mi
1, d

i
1), . . . , (m

i
ni

, di
ni

) , (5.107)

such that mi
1, . . . , m

i
ni

are elements of M . The durations can be assumed to
be rational numbers. We denote by O the multiset of all operations from all
jobs. For an operation v ∈ O, we denote its machine by M(v) and its duration
by τ(v).

A schedule is a function that defines, for each operation v, its starting time
S(v) on its specified machine M(v). A schedule S is feasible if the following
three constraints hold.

First, the starting time of all operations is greater than or equal to 0:

∀v ∈ O. S(v) ≥ 0 . (5.108)

Second, for every pair of consecutive operations vi, vj ∈ O in the same job,
the second operation does not start before the first ends:

S(vi) + τ(vi) ≤ S(vj) . (5.109)

Finally, every pair of different operations vi, vj ∈ O scheduled on the same
machine (M(vi) = M(vj)) is mutually exclusive:

S(vi) + τ(vi) ≤ S(vj) ∨ S(vj) + τ(vj) ≤ S(vi) . (5.110)

The length of the schedule S is defined as

max
v∈O

S(v) + τ(v) , (5.111)
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and the objective is to find a schedule S that minimizes this length. As usual,
we can define the decision problem associated with this optimization problem
by removing the objective function and adding a constraint that forces the
value of this function to be smaller than some constant.

It should be clear that a job-shop scheduling problem can be formulated
with difference logic. Note the disjunction in (5.110).

5.7.2 A Decision Procedure for Difference Logic

Recall that in this chapter we present only decision procedures for conjunctive
fragments, and postpone the problem of solving the general case to Chap. 11.

Definition 5.17 (inequality graph for nonstrict inequalities). Let S be
a set of difference predicates and let the inequality graph G(V,E) be the graph
comprising of one edge (x, y) with weight c for every constraint of the form
x− y ≤ c in S.

Given a difference logic formula ϕ with nonstrict inequalities only, the in-
equality graph corresponding to the set of difference predicates in ϕ can be
used for deciding ϕ, on the basis of the following theorem.

Theorem 5.18. Let ϕ be a conjunction of difference constraints, and let G
be the corresponding inequality graph. Then ϕ is satisfiable if and only if there
is no negative cycle in G.

The proof of this theorem is left as an exercise (Problem 5.15). The exten-
sion of Definition 5.17 and Theorem 5.18 to general difference logic (which
includes both strict and nonstrict inequalities) is left as an exercise as well
(see Problem 5.16).

By Theorem 5.18, deciding a difference logic formula amounts to search-
ing for a negative cycle in a graph. This can be done with the Bellman–
Ford algorithm [54] for finding the single-source shortest paths in a directed
weighted graph, in time O(|V | · |E|) (to make the graph single-source, we in-
troduce a new node and add an edge with weight 0 from this node to each
of the roots of the original graph). Although finding the shortest paths is not
our goal, we exploit a side-effect of this algorithm: if there exists a negative
cycle in the graph, the algorithm finds it and aborts.

5.8 Problems

5.8.1 Warm-up Exercises

Problem 5.1 (linear systems). Consider the following linear system, which
we denote by S:

x1 ≥ −x2 + 11
5

x1 ≤ x2 + 1
2

x1 ≥ 3x2 −3 .

(5.112)
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(a) Check with simplex whether S is satisfiable, as described in Sect. 5.2.
(b) Using the Fourier–Motzkin procedure, compute the range within which

x2 has to lie in a satisfying assignment.
(c) Consider a problem S′, similar to S, but where the variables are forced

to be integer. Check with Branch and Bound whether S′ is satisfiable. To
solve the relaxed problem, you can use a simplex implementation (there
are many of these on the Web).

5.8.2 The Simplex Method

Problem 5.2 (simplex). Compute a satisfying assignment for the following
problem using the general simplex method:

2x1 +2x2 +2x3 +2x4 ≤ 2
4x1 +x2 +x3 −4x4 ≤ −2
x1 +2x2 +4x3 +2x4 = 4 .

(5.113)

Problem 5.3 (complexity). Give a conjunction of linear constraints over
reals with n variables (that is, the size of the instance is parameterized) such
that the number of iterations of the general simplex algorithm is exponential
in n.

Problem 5.4 (difference logic with simplex). What is the worst-case run
time of the general simplex algorithm if applied to a conjunction of difference
logic constraints?

Problem 5.5 (strict inequalities with simplex). Extend the general sim-
plex algorithm with strict inequalities.

Problem 5.6 (soundness). Assume that the general simplex algorithm re-
turns “UNSAT”. Show a method for deriving a proof of unsatisfiability.

5.8.3 Integer Linear Systems

Problem 5.7 (complexity of ILP-feasibility). Prove that the feasibility
problem for integer linear programming is NP-hard.6

Problem 5.8 (0–1 ILP). A 0–1 integer linear system is an integer linear
system in which all variables are constrained to be either 0 or 1. Show how
a 0–1 integer linear system can be translated to a Boolean formula. What is
the complexity of the translation?

6 In fact it is NP-complete, but membership in NP is more difficult to prove. The
proof makes use of a small-model-property argument.
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Problem 5.9 (simplifications for 0–1 ILP). Generalize the simplification
demonstrated in (5.100)–(5.103).

Problem 5.10 (Gomory cuts). Find Gomory cuts corresponding to the
following results from the general simplex algorithm:

1. x4 = x1 − 2.5x2 + 2x3 where α := {x4 �→ 3.25, x1 �→ 1, x2 �→ −0.5, x3 �→
0.5}, x2 and x3 are at their upper bound and x1 is at its lower bound.

2. x4 = −0.5x1−2x2−3.5x3 where α := {x4 �→ 0.25, x1 �→ 1, x2 �→ 0.5, x3 �→
0.5}, x1 and x3 are at their lower bound and x2 is at its upper bound.

5.8.4 Omega Test

Problem 5.11 (integer fractions). Show that

i + 1−
γ

c
≥

1

c
.

Problem 5.12 (eliminating equalities). Show that

a m̂od b =

{
a mod b : a mod b < b/2
(a mod b)− b : otherwise

(5.114)

holds. Use the fact that

a/b = ⌊a/b⌋+
a mod b

b
.

Problem 5.13 (eliminating equalities). Show that the absolute values of
the coefficients of the variables xi are reduced to at most 5/6 of their previous
values after substituting σ:

|⌊ai/m + 1/2⌋+ (ai m̂od m)| ≤ 5/6|ai| . (5.115)

Problem 5.14 (eliminating equalities). The elimination of xn relies on
the fact that the coefficient of xn in the newly added constraint is −1. Let an

denote the coefficient of xn in the original constraint. Let m = an + 1, and

assume that an ≥ 2. Show that an m̂od m = −1.
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5.8.5 Difference Logic

Problem 5.15 (difference logic). Prove Theorem 5.18.

Problem 5.16 (inequality graphs for difference logic). Extend Defini-
tion 5.17 and Theorem 5.18 to general difference logic formulas (i.e., where
both strong and weak inequalities are allowed).

Problem 5.17 (difference logic). Give a reduction of difference logic to
SAT. What is the complexity of the reduction?

Problem 5.18 (integer difference logic). Show a reduction from the prob-
lem of integer difference logic to difference logic.

5.9 Bibliographic Notes

The Fourier–Motzkin variable elimination algorithm is the earliest docu-
mented method for solving linear inequalities. It was discovered in 1826 by
Fourier, and rediscovered by Motzkin in 1936.

The simplex method was introduced by Danzig in 1947 [55]. There are sev-
eral variations of and improvements on this method, most notably the revised
simplex method, which most industrial implementations use. This variant has
an apparent advantage on large and sparse LP problems, which seem to char-
acterize LP problems in practice. The variant of the general simplex algorithm
that we presented in Sect. 5.2 was proposed by Dutertre and de Moura [70] in
the context of DPLL(T ), a technique we describe in Chap. 11. Its main advan-
tage is that it works efficiently with incremental operations, i.e., constraints
can be added and removed with little effort.

Linear programs are a very popular modeling formalism for solving a wide
range of problems in science and engineering, finance, logistics and so on. See,
for example, how LP is used for computing an optimal placement of gates
in an integrated circuit [100]. The popularity of this method led to a large
industry of LP solvers, some of which are sold for tens of thousands of dollars
per copy. A classical reference to linear and integer linear programming is
the book by Schrijver [174]. Other resources on the subject that we found
useful include publications by Wolsey [204], Hillier and Lieberman [92], and
Vanderbei [196].

Gomory cutting-planes are due to a paper published by Ralph Gomory
in 1963 [89]. For many years, the operations research community considered
Gomory cuts impractical for large problems. There were several refinements
of the original method and empirical studies that revived this technique, es-
pecially in the context of the related optimization problem. See, for example,
the work of Balas et al. [72]. The variant we described is suitable for working
with the general simplex algorithm and its description here is based on [71].

The Omega test was introduced by Pugh as a method for deciding integer
linear arithmetic within an optimizing compiler [160]. It is an extension of the
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Fourier–Motzkin variable elimination. For an example of an application of the
Omega test inside a Fortran compiler, see [2]. A much earlier work following
similar lines to those of the omega test is by Paul Williams [199]. Williams’
work, in turn, is inspired by Presburger’s paper from 1929 [159].

Difference logic was recognized as an interesting fragment of linear arith-
metic by Pratt [158]. He considered “separation theory”, which is the conjunc-
tive fragment of what we call difference logic. He observed that most inequali-
ties in verification conditions are of this form. Disjunctive difference logic was
studied in M. Mahfoudh’s PhD thesis [119] and in [120], among other places.
A reduction of difference logic to SAT was studied in [187] (in this particular
paper and some later papers, this theory fragment is called “separation logic”,
after Pratt’s separation theory – not to be confused with the separation logic
that is discussed in Chap. 8). The main reason for the renewed interest in this
fragment is due to interest in timed automata: the verification conditions
arising in this problem domain are difference logic formulas.

In general, the amount of research and writing on linear systems is im-
mense, and in fact most universities offer courses dedicated to this subject.
Most of the research was and still is conducted in the operations research
community.

5.10 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

li, ui Constants bounding the i-th variable from below and
above

113

m The number of linear constraints in the original prob-
lem formulation

114

n The number of variables in the original problem for-
mulation

114

A Coefficient matrix 115

x The vector of the variables in the original problem
formulation

115

B, N The sets of basic and nonbasic variables, respectively 116

continued on next page
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continued from previous page

First used
Symbol Refers to . . . on page . . .

α A full assignment (to both basic and nonbasic vari-
ables)

116

θ See (5.13) 118

βi Upper or lower bound 128

m̂od Symmetric modulo 131
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Bit Vectors

6.1 Bit-Vector Arithmetic

The design of computer systems is error-prone, and, thus, decision procedures
for reasoning about such systems are highly desirable. A computer system uses
bit vectors to encode information, for example numbers. Owing to the finite
domain of these bitvectors, the semantics of operations such as addition no
longer matches what we are used to when reasoning about unbounded types,
for example the natural numbers.

6.1.1 Syntax

The subset of bit-vector arithmetic that we consider is defined by the following
grammar:

formula : formula ∧ formula | ¬formula | ( formula ) | atom

atom : term rel term | Boolean-Identifier | term[ constant ]

rel : < | =

term : term op term | identifier | ∼ term | constant | atom?term:term |

term[ constant : constant ] | ext( term )

op : + | − | · | / | << | >> | & | | | ⊕ | ◦

As usual, other useful operators such as “∨”, “�=”, and “≥” can be obtained us-
ing Boolean combinations of the operators that appear in the grammar. Most
operators have a straightforward meaning, but a few operators are unique to
bit-vector arithmetic. The unary operator “∼” denotes bitwise negation. The
function ext denotes sign and zero extension (the meanings of these operators
are explained in Sect. 6.1.3). The ternary operator c?a:b is a case-split: the
operator evaluates to a if c holds, and to b otherwise. The operators“<<”
and “>>” denote left and right shifts, respectively. The operator “⊕” denotes
bitwise XOR. The binary operator “◦” denotes concatenation of bit vectors.
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Motivation

As an example to describe our motivation, the following formula obviously
holds over the integers:

(x− y > 0) ⇐⇒ (x > y) . (6.1)

If x and y are interpreted as finite-width bit vectors, however, this equivalence
no longer holds, owing to possible overflow of the subtraction operation. As
another example, consider the following small C program:

unsigned char number = 200;
number = number + 100;
printf("Sum: %d\n", number);

This program may return a surprising result, as most architectures use eight
bits to represent variables with type unsigned char:

11001000 = 200
+ 01100100 = 100

= 00101100 = 44

When represented with eight bits by a computer, 200 is stored as 11001000.
Adding 100 results in an overflow, as the ninth bit of the result is discarded.

The meaning of operators such as “+” is therefore defined by means of
modular arithmetic. However, the problem of reasoning about bit vectors ex-
tends beyond that of overflow and modular arithmetic. For efficiency reasons,
programmers use bit-level operators to encode as much information as possible
into the number of bits available.

As an example, consider the implementation of a propositional SAT solver.
Recall the definition of a literal (Definition 1.11): a literal is a variable or its
negation. Propositional SAT solvers that operate on formulas in CNF have to
store a large number of such literals. We assume that we have numbered the
variables that occur in the formula, and denote the variables by x1, x2, . . ..

The DIMACS standard for CNF uses signed numbers to encode a literal,
e.g., the literal ¬x3 is represented as −3. The fact that we use signed numbers
for the encoding avoids the use of one bit vector to store the sign. On the
other hand, it reduces the possible number of variables to 231 − 1 (the index
0 cannot be used any more), but this is still more than sufficient for any
practical purpose.

In order to extract the index of a variable, we have to perform a case-split
on the sign of the bit vector, for example as follows:

unsigned variable_index(int literal) {
if(literal < 0)
return -literal;

else
return literal;

}
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The branch needed to implement the if statement in the program above slows
down the execution of the program, as it is hard to predict for the branch
prediction mechanisms of modern processors. Most SAT solvers therefore use
a different encoding: the least significant bit of the bit vector is used to encode
the sign of the literal, and the remaining bits encode the variable. The index
of the variable can then be extracted by means of a bit-vector right-shift
operation:

unsigned variable_index(unsigned literal) {
return literal >> 1;

}

Similarly, the sign can be obtained by means of a bitwise AND operation:

bool literal_sign(unsigned literal) {
return literal & 1;

}

The bitwise right-shift operation and the bitwise AND are implemented in
most microprocessors, and both can be executed efficiently. Such bitwise oper-
ators also frequently occur in hardware design. Reasoning about such artifacts
requires bit-vector arithmetic.

6.1.2 Notation

We use a simple variant of Church’s λ-Notation in order to define vectors
easily. A lambda expression for a bit vector with l bits has the form

λi ∈ {0, . . . , l − 1}. f(i) , (6.2)

where f(i) is an expression that denotes the value of the i-th bit.
The use of the λ-operator to denote bit vectors is best explained by an

example.

Example 6.1. Consider the following expressions.

• The expression
λi ∈ {0, . . . , l − 1}. 0 (6.3)

denotes the l-bit bit vector that consists only of zeros.
• A λ-expression is simply another way of defining a function without giving

it a name. Thus, instead of defining a function z with

z(i)
.
= 0 , (6.4)

we can simply write λi ∈ {0, . . . , l − 1}. 0 for z.
• The expression

λi ∈ {0, . . . , 7}.

{
0 : i is even
1 : otherwise

(6.5)

denotes the bit vector 10101010.
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︸ ︷︷ ︸
l bits

b0b1b2bl−1 bl−2

Fig. 6.1. A bit vector b with l bits. The bit number i is denoted by bi

• The expression
λi ∈ {0, . . . , l − 1}.¬xi (6.6)

denotes the bitwise negation of the vector x.

We omit the domain of i from the lambda expression if the number of bits
is clear from the context.

6.1.3 Semantics

We now give a formal definition of the meaning of a bit-vector arithmetic
formula. We first clarify what a bit vector is.

Definition 6.2 (bit vector). A bit vector b is a vector of bits with a given
length l (or dimension):

b : {0, . . . , l − 1} −→ {0, 1} . (6.7)

The set of all 2l bit vectors of length l is denoted by bvecl. The i-th bit of the
�

�

�

�
bvecl

bit vector b is denoted by bi (Fig. 6.1).

The meaning of a bit-vector formula obviously depends on the width of the
bit-vector variables in it. This applies even if no arithmetic is used. As an
example,

x �= y ∧ x �= z ∧ y �= z (6.8)

is unsatisfiable for bit vectors x, y, and z that are one bit wide, but satisfiable
for larger widths.

We sometimes use bit vectors that encode positive numbers only (unsigned
bit vectors), and also bit vectors that encode both positive and negative num-
bers (signed bit vectors). Thus, each expression is associated with a type.
The type of a bit-vector expression is

1. the width of the expression in bits, and
2. whether it is signed or unsigned.

We restrict the presentation to bit vectors that have a fixed, given length,
as bit-vector arithmetic becomes undecidable as soon as arbitrary-width bit
vectors are permitted. The width is known in most problems that arise in
practice.



6.1 Bit-Vector Arithmetic 153

In order to clarify the type of an expression, we add indices in square
brackets to the operator and operands in order to denote the bit-width (this
is not to be confused with bl, which denotes bit l of b). As an example, a[32] ·[32]
b[32] denotes the multiplication of a and b. Both the result and the operands
are 32 bits wide, and the remaining 32 bits of the result are discarded. The
expression a[8] ◦[24] b[16] denotes the concatenation of a and b and is in total 24
bits wide. In most cases, the width is clear from the context, and we therefore
usually omit the subscript.

Bitwise Operators

The meanings of bitwise operators can be defined through the bit vectors
that they yield. The binary bitwise operators take two l-bit bit vectors as
arguments and return an l-bit bit vector. As an example, the signature of the
bitwise OR operator “|” is

|[l] : (bvecl × bvecl) −→ bvecl . (6.9)

Using the λ-notation, the bitwise OR operator is defined as follows:

a | b
.
= λi. (ai ∨ bi) . (6.10)

All the other bitwise operators are defined in a similar manner. In the follow-
ing, we typically provide both the signature and the definition together.

Arithmetic Operators

The meaning of a bit-vector formula with arithmetic operators depends on
the interpretation of the bit vectors that it contains. There are many ways
to encode numbers using bit vectors. The most commonly used encodings for
integers are the binary encoding for unsigned integers and two’s comple-
ment for signed integers.

Definition 6.3 (binary encoding). Let x denote a natural number, and
b ∈ bvecl a bit vector. We call b a binary encoding of x iff

x = 〈b〉U , (6.11)

where 〈b〉 is defined as follows:
�

�

�

�

〈·〉U

〈·〉U : bvecl −→ {0, . . . , 2l − 1} ,

〈b〉U
.
=
∑l−1

i=0 bi · 2
i.

(6.12)

The bit b0 is called the least significant bit, and the bit bl−1 is called the
most significant bit.
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Binary encoding can be used to represent non-negative integers only. One way
of encoding negative numbers as well is to use one of the bits as a sign bit.

A naive way of using a sign bit is to simply negate the number if a des-
ignated bit is set, for example the most significant bit. As an example, 1001
could be interpreted as −1 instead of 1. This encoding is hardly ever used
in practice.1 Instead, most microprocessor architectures implement the two’s
complement encoding.

Definition 6.4 (two’s complement). Let x denote a natural number, and
b ∈ bvecl a bit vector. We call b the two’s complement of x iff

x = 〈b〉S , (6.13)

where 〈b〉S is defined as follows:
�

�

�

�

〈·〉S

〈·〉S : bvecl −→ {−2l−1, . . . , 2l−1 − 1} ,

〈b〉S := −2l−1 · bl−1 +
∑l−2

i=0 bi · 2i .
(6.14)

The bit with index l − 1 is called the sign bit of b.

Example 6.5. Some encodings of integers in binary and two’s complement
are

〈11001000〉U = 200 ,
〈11001000〉S = −128 + 64 + 8 = −56 ,
〈01100100〉S = 100 .

Note that the meanings of the relational operators “>”, “<”, “≤”, “≥”, the
multiplicative operators “·”, “/”, and the right-shift operator “>>” depend
on whether a binary encoding or a two’s complement encoding is used for the
operands, which is why the encoding of the bit vectors is part of the type.
We use the subscript U for a binary encoding (unsigned) and the subscript S
for a two’s complement encoding (signed). We may omit this subscript if the
encoding is clear from the context, or if the meaning of the operator does not
depend on the encoding (this is the case for most operators).

As suggested by the example at the beginning of this chapter, arithmetic
on bit vectors has a wraparound effect: if the number of bits required to
represent the result exceeds the number of bits available, the additional bits
of the result are discarded, i.e., the result is truncated. This corresponds to a
modulo operation, where the base is 2l. We write

x = y mod b (6.15)

to denote that x and y are equal modulo b. The use of modulo arithmetic allows
a straightforward definition of the interpretation of all arithmetic operators:

1 The main reason for this is the fact that it makes the implementation of arithmetic
operators such as addition more complicated, and that there are two encodings
for 0, namely 0 and -0.
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• Addition and subtraction:

a[l] +U b[l] = c[l] ⇐⇒ 〈a〉U + 〈b〉U = 〈c〉U mod 2l , (6.16)

a[l] −U b[l] = c[l] ⇐⇒ 〈a〉U − 〈b〉U = 〈c〉U mod 2l , (6.17)

a[l] +S b[l] = c[l] ⇐⇒ 〈a〉S + 〈b〉S = 〈c〉S mod 2l , (6.18)

a[l] −S b[l] = c[l] ⇐⇒ 〈a〉S − 〈b〉S = 〈c〉S mod 2l . (6.19)

Note that a +U b = a +S b and a −U b = a −S b (see Problem 6.7), and
thus the U/S subscript can be omitted from the addition and subtraction
operands. A semantics for mixed-type expressions is also easily defined, as
shown in the following example:

a[l]U +U b[l]S = c[l]U ⇐⇒ 〈a〉+ 〈b〉S = 〈c〉 mod 2l . (6.20)

• Unary minus:

−a[l] = b[l] ⇐⇒ −〈a〉S = 〈b〉S mod 2l . (6.21)

• Relational operators:

a[l]U < b[l]U ⇐⇒ 〈a〉U < 〈b〉U , (6.22)

a[l]S < b[l]S ⇐⇒ 〈a〉S < 〈b〉S , (6.23)

a[l]U < b[l]S ⇐⇒ 〈a〉U < 〈b〉S , (6.24)

a[l]S < b[l]U ⇐⇒ 〈a〉S < 〈b〉U . (6.25)

The semantics for the other relational operators such as “≥” follows the
same pattern. Note that ANSI-C compilers do not implement the relational
operators on operands with mixed encodings the way they are formalized
above (see Problem 6.6). Instead, the signed operand is converted to an
unsigned operand, which does not preserve the meaning expected by many
programmers.

• Multiplication and division:

a[l] ·U b[l] = c[l] ⇐⇒ 〈a〉U · 〈b〉U = 〈c〉U mod 2l , (6.26)

a[l]/Ub[l] = c[l] ⇐⇒ 〈a〉U/〈b〉U = 〈c〉U mod 2l , (6.27)

a[l] ·S b[l] = c[l] ⇐⇒ 〈a〉S · 〈b〉S = 〈c〉S mod 2l , (6.28)

a[l]/Sb[l] = c[l] ⇐⇒ 〈a〉S/〈b〉S = 〈c〉S mod 2l . (6.29)

• The extension operator: converting a bit vector to a bit vector with more
bits is called zero extension in the case of an unsigned bit vector, and
sign extension in the case of a signed bit vector. Let l ≤ m. The value
that is encoded does not change:

ext [m]U (a[l]) = b[m]U ⇐⇒ 〈a〉U = 〈b〉U , (6.30)

ext [m]S(a[l]) = b[m]S ⇐⇒ 〈a〉S = 〈b〉S . (6.31)
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• Shifting: the left-shift operator “<<” takes two operands and shifts the
first one to the left as many times as is given by the respective value of
the second operand. The width of the left-hand-side operand is called the
width of the shift, whereas the width of the right-hand-side operator is the
width of the shift-distance. The vector is filled up with zeros from the right:

a[l] << bU = λi ∈ {0, . . . , l − 1}.

{
ai−〈b〉 : i ≥ 〈b〉U
0 : otherwise .

(6.32)

If b is a signed number, we replace 〈b〉U by 〈b〉S . See also Problem 6.5. The
meaning of the right-shift “>>” operator depends on the encoding of the
first operand: if it uses binary encoding (which, recall, is for unsigned bit
vectors), zeros are inserted from the left. This is called a logical right
shift:

a[l]U >> bU = λi ∈ {0, . . . , l − 1}.

{
ai+〈b〉 : i < l − 〈b〉
0 : otherwise .

(6.33)

If the first operand uses two’s complement encoding, the sign bit of a is
replicated. This is also called an arithmetic right shift:

a[l]S >> bU = λi ∈ {0, . . . , l − 1}.

{
ai+〈b〉 : i < l − 〈b〉
al−1 : otherwise .

(6.34)

6.2 Deciding Bit-Vector Arithmetic with Flattening

6.2.1 Converting the Skeleton

The most commonly used decision procedure for bit-vector arithmetic is called
flattening.2 Algorithm 6.2.1 implements this technique. For a given bit-vector
arithmetic formula φ, the algorithm computes an equisatisfiable propositional
formula B, which is then passed to a SAT solver.

�

�

�

�
B

Let At(φ) denote the set of atoms in φ. As a first step, the algorithm re-�

�

�

�

At(φ) places the atoms in φ with new Boolean variables. We denote the variable that
replaces an atom a ∈ At(φ) by e(a), and call this the propositional encoder
of a. The resulting formula is denoted by e(φ). We call it the propositional

�

�

�

�

e(φ)
skeleton of φ. The propositional skeleton is the expression that is assigned
to B initially.

Let T (φ) denote the set of terms in φ. The algorithm then assigns a vec-
�

�

�

�

T (φ)
tor of new Boolean variables to each bit-vector term in T (φ). We use e(t) to�

�

�

�

e(t) denote this vector of variables for a given t ∈ T (φ), and e(t)i to denote the
variable for the bit with index i of the term t. The width of e(t) matches the
width of the term t. Note that, so far, we have used e to denote three differ-
ent, but related things: a propositional encoder of an atom, a propositional

2 In colloquial terms, this technique is sometimes referred to as “bit-blasting”.
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formula resulting from replacing all atoms of a formula with their respective
propositional encoders, and a propositional encoder of a term.

The algorithm then iterates over the terms and atoms of φ, and computes
a constraint for each of them. The constraint is returned by the function
BV-Constraint, and is added as a conjunct to B.

�

�

�

�

Algorithm 6.2.1: BV-Flattening

Input: A formula φ in bit-vector arithmetic
Output: An equisatisfiable Boolean formula B

1. function BV-Flattening
2. B:=e(φ); ⊲ the propositional skeleton of φ
3. for each t[l] ∈ T (φ) do

4. for each i ∈ {0, . . . , l − 1} do

5. set e(t)i to a new Boolean variable;
6. for each a ∈ At(φ) do

7. B:=B∧ BV-Constraint(e, a);
8. for each t[l] ∈ T (φ) do

9. B:=B∧ BV-Constraint(e, t);
10. return B;

The constraint that is needed for a particular atom a or term t depends
on the atom or term, respectively. In the case of a bit vector or a Boolean
variable, no constraint is needed, and BV-Constraint returns true. If t is
a bit-vector constant C[l], the following constraint is generated:

l−1∧

i=0

(Ci ⇐⇒ e(t)i) . (6.35)

Otherwise, t must contain a bit-vector operator. The constraint that is needed
depends on this operator. The constraints for the bitwise operators are
straightforward. As an example, consider bitwise OR, and let t = a |[l]b. The
constraint returned by BV-Constraint is:

l−1∧

i=0

((ai ∨ bi) ⇐⇒ e(t)i) . (6.36)

The constraints for the other bitwise operators follow the same pattern.

6.2.2 Arithmetic Operators

The constraints for the arithmetic operators often follow implementations of
these operators as a circuit. There is an abundance of literature on how to
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build efficient circuits for various arithmetic operators. However, experiments
with various alternative circuits have shown that the simplest ones usually
burden the SAT solver the least. We begin by defining a one-bit adder, also
called a full adder.

Definition 6.6 (full adder). A full adder is defined using the two functions
carry and sum. Both of these functions take three input bits a, b, and cin as
arguments. The function carry calculates the carry-out bit of the adder, and
the function sum calculates the sum bit:

sum(a, b, cin)
.
= (a⊕ b)⊕ cin , (6.37)

carry(a, b, cin)
.
= (a ∧ b) ∨ ((a⊕ b) ∧ cin) . (6.38)

We can extend this definition to adders for bit vectors of arbitrary length.

Definition 6.7 (carry bits). Let x and y denote two l-bit bit vectors and
cin a single bit. The carry bits c0 to cl are defined recursively as follows:

ci
.
=

{
cin : i = 0
carry(xi−1, yi−1, ci−1) : otherwise .

(6.39)

Definition 6.8 (adder). An l-bit adder maps two l-bit bit vectors x, y and
a carry-in bit cin to their sum and a carry-out bit. Let ci denote the i-th carry
bit as in Definition 6.7. The function add is defined using the carry bits ci:

add(x, y, cin)
.
= 〈result, cout〉 , (6.40)

resulti
.
= sum(xi, yi, ci) for i ∈ {0, . . . , l − 1} , (6.41)

cout
.
= cn . (6.42)

The circuit equivalent of this construction is called a ripple carry adder . One
can easily implement the constraint for t = a+ b using an adder with cin = 0:

l−1∧

i=0

(add(a, b, 0).resulti ⇐⇒ e(t)i) . (6.43)

One can prove by induction on l that (6.43) holds if and only if 〈a〉U + 〈b〉U =
〈e(t)〉U mod 2l, which shows that the constraint complies with the semantics.

Subtraction, where t = a − b, is implemented with the same circuit by
using the following constraint (recall that ∼b is the bitwise negation of b):

l−1∧

i=0

(add(a,∼b, 1).result i ⇐⇒ e(t)i) . (6.44)

This implementation makes use of the fact that 〈(∼b) + 1〉S = −〈b〉S mod 2l

(see Problem 6.8).
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Relational Operators

The equality a =[l] b is implemented using simply a conjunction:

l−1∧

i=0

ai = bi ⇐⇒ e(t) . (6.45)

The relation a < b is transformed into a − b < 0, and an adder is built for
the subtraction, as described above. Thus, b is negated and the carry-in bit
of the adder is set to true. The result of the relation a < b depends on the
encoding. In the case of unsigned operands, a < b holds if the carry-out bit
cout of the adder is false:

〈a〉U < 〈b〉U ⇐⇒ ¬add(a,∼b, 1).cout . (6.46)

In the case of signed operands, a < b holds if and only if (al−1 = bl−1) �= cout:

〈a〉S < 〈b〉S ⇐⇒ (al−1 ⇐⇒ bl−1)⊕ add(a, b, 1).cout . (6.47)

Comparisons involving mixed encodings are implemented by extending both
operands by one bit, followed by a signed comparison.

Shifts

Recall that we call the width of the left-hand-side operand of a shift (the
vector that is to be shifted) the width of the shift, whereas the width of the
right-hand-side operand is the width of the shift distance.

We restrict the left and right shifts as follows: the width l of the shift must
be a power of two, and the width of the shift distance n must be log2 l.

With this restriction, left and right shifts can be implemented by using the
following construction, which is called the barrel shifter. The shifter is split
into n stages. Stage s can shift the operand by 2s bits or leave it unaltered.
The function ls is defined recursively for s ∈ {−1, . . . , n− 1}:

ls(a[l], b[n]U ,−1)
.
= a, (6.48)

ls(a[l], b[n]U , s)
.
=

λi ∈ {0, . . . , l − 1}.

⎧
⎨
⎩

(ls(a, b, s− 1))i−2s : i ≥ 2s ∧ bs

(ls(a, b, s− 1))i : i ≥ 2s ∧ ¬bs

0 : otherwise .
(6.49)

The barrel shifter construction needs only O(n log n) logical operators, in con-
trast to the naive implementation, which requires O(n2) operators.
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Multiplication and Division

Multipliers can be implemented following the most simplistic circuit design,
which uses the shift-and-add idea. The function mul is defined recursively for
s ∈ {−1, . . . , n− 1}, where n denotes the width of the second operand:

mul(a, b,−1)
.
= b , (6.50)

mul(a, b, s)
.
= mul(a, b, s− 1) + (bs?(a << s) : 0) . (6.51)

A division a/Ub is implemented by adding two constraints:

b �= 0 =⇒ e(t) · b + r = a . (6.52)

b �= 0 =⇒ r < b . (6.53)

The variable r is a new bit vector of the same width as b, and contains the
remainder. The signed-division and modulo operations are done in a similar
way.

6.3 Incremental Bit Flattening

6.3.1 Some Operators Are Hard

For some operators, the size of the formula generated by BV-Constraint
may be large. As an example, consider the formula for a single multiplier with
n bits. The table in Fig. 6.2 shows the number of variables and the number
of CNF clauses that are generated from the formula using Tseitin’s encoding
(see Sect. 1.3).

n Number of variables Number of clauses

8 313 1001
16 1265 4177
24 2857 9529
32 5089 17057
64 20417 68929

Fig. 6.2. The size of the constraint for an n-bit multiplier expression after Tseitin’s
transformation

In addition to the sheer size of these formulas, their symmetry and con-
nectivity is a burden on the decision heuristic of state-of-the-art propositional
SAT solvers. As a consequence, formulas with multipliers are often very hard
to solve. Similar observations hold for other arithmetic operators such as di-
vision and modulo.
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As an example, consider the following bit-vector formula:

a · b = c ∧ b · a �= c ∧ x < y ∧ x > y (6.54)

When this formula is encoded into CNF, a SAT instance with about 11 000
variables is generated for a width of 32 bits. This formula is obviously unsat-
isfiable. There are two reasons for this: the first two conjuncts are inconsis-
tent, and independently, the last two conjuncts are inconsistent. The decision
heuristics of most SAT solvers (see Chap. 2) are biased towards splitting first
on variables that are used frequently, and thus favor decisions on a, b, and
c. Consequently, they attempt to show unsatisfiability of the formula on the
hard part, which includes the two multipliers. The “easy” part of the formula,
which contains only two relational operators, is ignored. Most propositional
SAT solvers cannot solve this formula in a reasonable amount of time.

In many cases, it is therefore beneficial to build the flattened formula B
incrementally. Algorithm 6.3.1 is a realization of this idea: as before, we start
with the propositional skeleton of φ. We then add constraints for the “inex-
pensive” operators, and omit the constraints for the “expensive” operators.
The bitwise operators are typically inexpensive, whereas arithmetic operators
are expensive. The encodings with missing constraints can be considered an
abstraction of φ, and thus the algorithm is an instance of the abstraction–
refinement procedure introduced in Sect. 3.4.

The current flattening B is passed to a propositional SAT solver. If B is
unsatisfiable, so is the original formula φ. Recall the formula (6.54): as soon as
the constraints for the second half of the formula are added to B, the encod-
ing becomes unsatisfiable, and we may conclude that (6.54) is unsatisfiable
without considering the multipliers.

On the other hand, if B is satisfiable, one of two cases applies:

1. The original formula φ is unsatisfiable, but one (or more) of the omitted
constraints is needed to show this.

2. The original formula φ is satisfiable.

In order to distinguish between these two cases, we can check whether the
satisfying assignment produced by the SAT solver satisfies the constraints
that we have omitted. As we might have removed variables, the satisfying
assignment might have to be extended by setting the missing values to some
constant, for example zero. If this assignment satisfies all constraints, the
second case applies, and the algorithm terminates.

If this is not so, one or more of the terms for which the constraints were
omitted is inconsistent with the assignment provided by the SAT solver. We
denote this set of terms by I. The algorithm proceeds by selecting some of
these terms, adding their constraints to B, and reiterating. The algorithm
terminates, as we strictly add more constraints with each iteration. In the
worst case, all constraints from T (φ) are added to the encoding.
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�
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�
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Algorithm 6.3.1: Incremental BV-Flattening

Input: A formula φ in bit-vector logic
Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”

otherwise

1. function Incremental-BV-Flattening(φ)
2. B := e(φ); ⊲ propositional skeleton of φ
3. for each t[l] ∈ T (φ) do

4. for each i ∈ {0, . . . , l − 1} do

5. set e(t)i to a new Boolean variable;
6. while (true) do

7. α := SAT-Solver(B);
8. if α=“Unsatisfiable” then

9. return “Unsatisfiable”;
10. else

11. Let I ⊆ T (φ) be the set of terms that are inconsistent with the
satisfying assignment;

12. if I = ∅ then

13. return “Satisfiable”;
14. else

15. Select “easy” F ′ ⊆ I;
16. for each t[l] ∈ F ′ do

17. B:=B∧BV-Constraint(e, t);

6.3.2 Enforcing Functional Consistency

In many cases, omitting constraints for particular operators may result in a
flattened formula that is too weak, and thus is satisfied by too many spurious
models. On the other hand, the full constraint may burden the SAT solver
too much. A compromise between the maximum strength of the full constraint
and omitting the constraint altogether is to replace functions over bit-vectors
by uninterpreted functions, and then reduce them to equalities while enforcing
functional consistency only. The concept of functional consistency was pre-
sented in Chap. 3. This technique is particularly effective when one is checking
the equivalence of two models.

For example, let a1 op b1 and a2 op b2 be two terms, where op is some bi-
nary operator (for simplicity, assume that these are the only terms in the input
formula that use op). First, replace op with a new uninterpreted-function sym-
bol G. Second, apply Ackermann’s reduction in order to eliminate G: replace
every occurrence of G(a1, b1) with a new variable g1, and every occurrence
of G(a2, b2) with a new variable g2. Finally, add the functional-consistency
constraint

a1 = a2 ∧ b1 = b2 =⇒ g1 = g2 . (6.55)
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The resulting formula does not contain constraints that correspond to the
flattening of op. It is still necessary, however, to flatten the equalities resulting
from the reduction.

6.4 Using Solvers for Linear Arithmetic

6.4.1 Motivation

The main disadvantage of flattening-based propositional encodings for for-
mulas in bit-vector arithmetic is that all high-level structure present in the
formula is lost. Another problem is that encoding an addition in propositional
logic results in one XOR per bit. The XORs are chained together through the
carry bit. It is known that such XOR chains can result in very hard SAT
instances. As a result, there are many bit-vector formulas that cannot be
decided by means of bit flattening and a SAT solver.

6.4.2 Integer Linear Arithmetic for Bit Vectors

We introduced decision procedures for linear arithmetic in Chap. 5. A re-
stricted subset of bit-vector arithmetic can be translated into linear arithmetic
over the integers to obtain a decision procedure that exploits the bit-vector
structure (also known as the word-level structure) of the original decision
problem.

Definition 6.9 (linear bit-vector arithmetic). A term in bit-vector arith-
metic that uses only constants on the right-hand side of binary bitwise, mul-
tiplication, and shift operators is called linear.

We denote the linear atoms in a bit-vector formula φ by AL(φ), and the
�

�

�

�

AL(φ)
remaining atoms (the nonlinear atoms) by AN (φ). �

�

�

�

AN (φ)Let a be a linear atom. As preparation, we perform a number of transfor-
mations on the terms contained in a. We write �b� for the transformation of
any bit-vector arithmetic term b.

• Let b >> d denote a bitwise right-shift term that is contained in a, where
b is a term and d is a constant. It is replaced by �b�/2〈d〉, i.e.,

�b >> d�
.
= �b�/2〈d〉 . (6.56)

Bitwise left shifts are handled in a similar manner.
• The bitwise negation of a term b is replaced with −�b� + 1:

�∼b�
.
= −�b� + 1 . (6.57)
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• A bitwise AND term b[l]&1, where b is any term, is replaced by a new
integer variable x subject to the following constraints over x and a second
new integer variable σ:

0 ≤ x ≤ 1 ∧ �b� = 2σ + x ∧ 0 ≤ σ < 2l−1 (6.58)

A bitwise AND with other constants can be replaced using shifts. This
can be optimized further by joining together groups of adjacent one-bits
in the constant on the right-hand side.

• The bitwise OR is replaced with bitwise negation and bitwise AND.

We are now left with addition, subtraction, multiplication, and division.
As the next step, the division operators are removed from the constraints.

As an example, the constraint a/[32]3 = b becomes a = b ·[34] 3. Note that the
bit-width of the multiplication has to be increased in order to take overflow
into account. The operands a and b are sign-extended if signed, and zero-
extended if unsigned. After this preparation, we can assume the following
form of the atoms without loss of generality:

c1 · t1 +[l] c2 · t2 op b , (6.59)

where op is one of the relational operators as defined in Sect. 6.1, c1, c2, and
b are constants, and t1 and t2 are bit-vector identifiers with l bits. Sums with
more than two addends can be handled in a similar way.

As we can handle additions efficiently, all scalar multiplications c ·[l] a with
a small constant c are replaced by c additions. For example, 3 · a becomes
a + a + a. For large coefficients, this is inefficient, and a different encoding is
used: let σ be a new variable. The scalar multiplication is replaced by c·a−2l ·σ
together with the following constraints:

c · a− 2l · σ ≤ 2l − 1 ∧ σ ≤ c− 1 . (6.60)

Case-Splitting for Overflow

After this transformation, we are left with bit-vector additions of the following
form:

t1 +[l] t2 op b . (6.61)

If the constraints are passed in this form to a decision procedure for integer
linear arithmetic, for example the Omega test, the potential overflow in the l-
bit bit-vector addition is disregarded. Given that t1 and t2 are l-bit unsigned
vectors, we have t1 ∈ {0, . . . , 2l − 1} and t2 ∈ {0, . . . , 2l − 1}, and, thus,
t1 + t2 ∈ {0, . . . , 2l+1 − 2}. We use a case-split to adjust the value of the sum
in the case of an overflow and transform (6.61) into

((t1 + t2 ≤ 2l − 1) ? t1 + t2 : (t1 + t2 − 2l)) op b . (6.62)
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The Omega test does not itself handle the resulting case-splits, but the case-
splits can be lifted up to the propositional level by introducing an additional
propositional variable p, and adding the following constraints:

p ⇐⇒ (t1 + t2 ≤ 2l − 1) , (6.63)

p =⇒ (t1 + t2) op b , (6.64)

¬p =⇒ (t1 + t2 − 2l) op b . (6.65)

Thus, the price paid for the bit-vector semantics is two additional integer
constraints for each bit-vector addition in the original problem. In practice,
this technique is known to perform well on problems in which most constraints
are conjoined, but deteriorates on problems with a complex Boolean structure.
The performance also suffers when many bitwise operators are used.

Example 6.10. Consider the following formula:

x[8] +[8] 100 ≤ 10[8] . (6.66)

This formula is already in the form given by (6.61). We only need to add the
case-split:

0 ≤ x ≤ 255 , (6.67)

p ⇐⇒ (x + 100 ≤ 255) , (6.68)

p =⇒ (x + 100) ≤ 10 , (6.69)

¬p =⇒ (x + 100− 256) ≤ 10 . (6.70)

The conjunction of (6.67)–(6.70) has satisfying assignments, one of which is
{p �→ false, x �→ 160}. This is also a satisfying assignment for (6.66).

6.5 Fixed-Point Arithmetic

6.5.1 Semantics

Many applications, for example in scientific computing, require arithmetic
on numbers with a fractional part. High-end microprocessors offer support for
floating-point arithmetic for this purpose. However, fully featured floating-
point arithmetic is too heavyweight for many applications, such as control
software embedded in vehicles, and computer graphics. In these domains,
fixed-point arithmetic is a reasonable compromise between accuracy and
complexity. Fixed-point arithmetic is also commonly supported by database
systems, for example to represent amounts of currency.

In fixed-point arithmetic, the representation of the number is partitioned
into two parts, the integer part (also called the magnitude) and the fractional
part (Fig. 6.3). The number of digits in the fractional part is fixed – hence the
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︸ ︷︷ ︸
l bits

bkbk+1bl−1 bk−2bk−1 b1 b0

j bits︷ ︸︸ ︷ k bits︷ ︸︸ ︷

bl−2

Fig. 6.3. A fixed-point bit vector b with a total of j + k = l bits. The dot is called
the radix point. The j bits before the dot represent the magnitude (the integer part),
whereas the k bits after the dot represent the fractional part

name “fixed point arithmetic”. The number 1.980, for example, is a fixed-point
number with a three-digit fractional part.

The same principle can be applied to binary arithmetic, as captured by
the following definition. Recall the definition of 〈·〉S (two’s complement) from
Sect. 6.1.3.

Definition 6.11. Given two bit vectors M and F with m and f bits, respec-
tively, we define the rational number that is represented by M.F as follows
and denote it by 〈M.F 〉:

〈·〉 : {0, 1}m+f −→ Q ,

〈M.F 〉 :=
〈M ◦ F 〉S

2f
.

Example 6.12. Some encodings of rational numbers as fixed-point numbers
with base 2 are:

〈0.10〉 = 0.5 ,
〈0.01〉 = 0.25 ,
〈01.1〉 = 1.5 ,

〈11111111.1〉 = −0.5 .

Some rational numbers are not precisely representable using fixed-point arith-
metic in base 2: they can only be approximated. As an example, for m = f = 4,
the two numbers that are closest to 1/3 are

〈0000.0101〉 = 0.3125 ,
〈0000.0110〉 = 0.375 .

Definition 6.11 gives us the semantics of fixed-point arithmetic. For example,
the meaning of addition on bit vectors that encode fixed-point numbers can
be defined as follows:

aM .aF + bM .bF = cM .cF ⇐⇒
〈aM .aF 〉 · 2f + 〈bM .bF 〉 · 2f = 〈cM .cF 〉 · 2f mod 2m+f .

There are variants of fixed-point arithmetic that implement saturation
instead of overflow semantics, that is, instead of wrapping around, the result
remains at the highest or lowest number that can be represented with the given
precision. Both the semantics and the flattening procedure are straightforward
for this case.
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6.5.2 Flattening

Fixed-point arithmetic can be flattened just as well as arithmetic using binary
encoding or two’s complement. We assume that the numbers on the left- and
right-hand sides of a binary operator have the same numbers of bits, before
and after the radix point. If this is not so, missing bits after the radix point
can be added by padding the fractional part with zeros from the right. Missing
bits before the radix point can be added from the left using sign-extension.

The operators are encoded as follows:

• The bitwise operators are encoded exactly as in the case of binary numbers.
Addition, subtraction, and the relational operators can also be encoded as
in the case of binary numbers.

• Multiplication requires an alignment. The result of a multiplication of two
numbers with f1 and f2 bits in the fractional part, respectively, is a number
with f1 + f2 bits in the fractional part. Note that, most commonly, fewer
bits are needed, and thus, the extra bits of the result have to be rounded
off using a separate rounding step.

Example 6.13. Addition and subtraction are straight-forward, but note the
need for sign-extension in the second sum:

〈00.1〉+ 〈00.1〉 = 〈01.0〉
〈000.0〉+ 〈1.0〉 = 〈111.0〉

The following examples illustrate multiplication without any subsequent
rounding:

〈0.1〉 · 〈1.1〉 = 〈0.11〉
〈1.10〉 · 〈1.1〉 = 〈10.010〉

If needed, rounding towards zero, towards the next even number, or towards
+/−∞ can be applied in order to reduce the size of the fractional part; see
Problem 6.9.

There are many other encodings of numbers, which we do not cover here,
e.g., binary-coded decimals (BCDs), or fixed-point formats with sign bit.

6.6 Problems

6.6.1 Semantics

Problem 6.1 (operators that depend on the encoding). Provide an
example (with values of operands) that illustrates that the semantics depend
on the encoding (signed vs. unsigned) for each of the following three operators:
>, ⊗, and >>.

Problem 6.2 (λ-notation). Define the meaning of al ◦ bl using the λ-
notation.
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Problem 6.3 (negation). What is −10000000S if the operand of the unary
minus is a bit-vector constant?

Problem 6.4 (λ-notation). Define the meaning of a[l]U >>[l]U b[m]S and
a[l]S >>[l]S b[m]S using modular arithmetic. Prove these definitions to be
equivalent to the definition given in Sect. 6.1.3.

Problem 6.5 (shifts in hardware). What semantics of the left-shift does
the processor in your computer implement? You can use a program to test
this, or refer to the specification of the CPU. Formalize the semantics.

Problem 6.6 (relations in hardware). What semantics of the < operator
does the processor in your computer implement if a signed integer is compared
with an unsigned integer? Try this for the ANSI-C types int, unsigned,
char, and unsigned char. Formalize the semantics, and specify the vendor
and model of the CPU.

Problem 6.7 (two’s complement). Prove

a[l] +U b[l] = a[l] +S b[l]. (6.71)

6.6.2 Bit-Level Encodings of Bit-Vector Arithmetic

Problem 6.8 (negation). Prove 〈(∼ b) + 1〉S = −〈b〉S mod 2l.

Problem 6.9 (relational operators). Prove the correctness of the flattening
for “<” as given in Sect. 6.2, for

(a) unsigned operands,
(b) signed operands,
(c) an unsigned and a signed operand.

Problem 6.10 (rounding for fixed-point arithmetic). Formally specify
the operator for rounding a fixed-point number with a fractional part of size
f1 to a fractional part of size f2 < f1 for the following cases:

(a) rounding to zero,
(b) rounding to −∞, and
(c) rounding to the nearest even number.

Problem 6.11 (flattening fixed-point arithmetic). Provide a flattening
for the three rounding operators above.
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6.6.3 Using Solvers for Linear Arithmetic

Problem 6.12 (bitwise AND). Give a translation of

x[32]U = y[32]U&0xffff0000 (6.72)

into disjunctive integer linear arithmetic that is more efficient than that sug-
gested by (6.58).

Problem 6.13 (addition without splitting). Can you propose a different
translation for addition that does not use case-splitting but uses a new integer
variable instead?

6.7 Bibliographic Notes

Bit-vector arithmetic was identified as an important logic for verification and
equivalence checking in the hardware industry in [183]. The notation we use
to annotate the type of the bit-vector expressions is taken from [32].
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cision problems found in the hardware verification domain. Brinkmann and
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Chap. 11.

Cogent [49] decides the validity of ANSI-C expressions. ANSI-C ex-
pressions are drawn from a fragment of bit-vector arithmetic, extended with
pointer logic (see Chap. 8). Cogent and related procedures have many ap-
plications besides checking verification conditions. As an example, see [25, 26]
for an application of Cogent to database testing. In addition to deciding the
validity of ANSI-C expressions, C32SAT [33], developed by Brummayer and
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Biere, is also able to determine if an expression always has a well-defined
meaning according to the ANSI-C standard.

Current state-of-the-art decision procedures for bit-vector arithmetic apply
heavy preprocessing to the formula, but ultimately rely on flattening a formula
to propositional SAT [34, 123]. The preprocessing is especially beneficial if the
formula also contains large arrays, for example for modeling memories [78,
122]. The tool Spear [7], by Babic and Hu, which is based on bit-blasting
and a fast SAT solver with numerous optimization parameters that were tuned
automatically, won the 2007 competition in the bit-vector category.

6.8 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

c?a : b Case-split on condition c 149

λ Lambda expressions 151

bvecl Set of bit vectors with l bits 152

〈·〉U Number encoded by binary encoding 153

〈·〉S Number encoded by two’s complement 154

A(φ) Set of atoms in φ 156

T (φ) Set of terms in φ 156

ci Carry bit i 158



7

Arrays

7.1 Introduction

The array is an important type of data structure that is used in most software
programs, as well as in other domains, such as in modeling memories and
caches in hardware design. This chapter introduces decision procedures for
array logic. We focus on methods that perform a reduction from array logic
to theories that we have already introduced.

Array logic permits expressions over arrays, which are formalized as maps
from an index type to an element type. We denote the index type by TI , and
the element type by TE . The type of the arrays themselves is denoted by TA,
which is a shorthand for TI −→ TE , i.e., the set of functions that map an
element of TI to an element of TE .

Let a ∈ TA denote an array. There are two basic operations on arrays:

1. Reading an element with index i ∈ TI from a. The value of the element
that has index i is denoted by a[i].

2. Writing an element with index i ∈ TI . Let e ∈ TE denote the value to be
written. The array a where element i has been replaced by e is denoted
by a{i←− e}.

We call the theories used to reason about the indices and the elements the
index theory and the element theory, respectively.

The index logic should permit existential and universal quantification, in
order to model properties such as “there exists an array element that is zero”
or “all elements of the array are greater than zero”. An example of a suit-
able index logic is Presburger arithmetic, i.e., linear arithmetic over integers
(Chap. 5) with quantification (Chap. 9). We can obtain multi-dimensional
arrays by recursively defining TA(n) for n-dimensional arrays. For n ≥ 2, we
simply add TA(n− 1) to the element type of TA(n).

We start with a very general definition of array logic. Validity for this logic
is not decidable, however, and we therefore add restrictions later on.
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Definition 7.1 (array logic). The syntax of a formula in array logic is
defined by extending the syntactic rules for the index logic and the element
logic. Let atomI and atomE denote an atom in the index logic and element
logic, respectively, and let termI and termE denote a term in the index and
element logic, respectively:

atom : atomI | atomE | ¬atom | atom ∧ atom |

∀ array-identifier . atom

termA : array-identifier | termA{termI ←− termE}

termE : termA [ termI ]

Observe that equality between arrays is not permitted by the grammar. Equal-
ity between arrays a1 and a2 can be written as ∀i. a1[i] = a2[i], assuming
equality is permitted by the element theory.

The main axiom used to define the meanings of the two new operators
above is the read-over-write axiom: after the value e has been written into
array a at index i, the value of this array at index i is e. The value at any
index j �= i matches that in the array before the write operation at index j:

∀a ∈ TA. ∀e ∈ TE . ∀i, j ∈ TI . a{i ←− e}[j] =

{
e : i = j
a[j] : otherwise .

(7.1)

As mentioned above, the problem of deciding the validity of an arbitrary
formula in array logic is undecidable, even if the combination of the index logic
and the element logic is decidable (see Problem 7.2). The following example
illustrates the use of array logic for verifying an invariant.

Example 7.2. To illustrate the use of array logic in program verification,
consider the pseudocode fragment in Fig. 7.1. The main step of the correct-
ness argument is to show that the invariant in line 7 is maintained by the
assignment in line 6. A common way to do so is to generate verification
conditions, e.g., using Hoare’s axiom system. We obtain the following veri-
fication condition for the claim:

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i ←− 0}

=⇒ (∀x ∈ N0. x ≤ i =⇒ a′[x] = 0) .
(7.2)

Proving validity of this formula shows that the loop invariant is maintained.
This claim can be proven manually by means of the axiom in (7.1). We aim
at an automatic procedure to decide the validity of expressions such as the
one above.

7.2 Arrays as Uninterpreted Functions

Consider the fragment of array logic which does not permit quantification over
arrays, i.e., arrays are ground terms. A trivial way to reduce such formulas to a
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1 a: array 0..99 of integer;
2 i: integer;
3
4 for i:=0 to 99 do

5 /* ∀x ∈ N0. x < i =⇒ a[x] = 0 */
6 a[i]:=0;
7 /* ∀x ∈ N0. x ≤ i =⇒ a[x] = 0 */
8 done;
9 /* ∀x ∈ N0. x ≤ 99 =⇒ a[x] = 0 */

Fig. 7.1. Pseudocode fragment that initializes an array of size 100 with zeros,
annotated with the invariants that are maintained

Aside: Array Bounds Checking in Programs
While array logic uses arrays of unbounded size, array data structures in
programs are of bounded size. If an index variable exceeds the size of an
array in a program, the value returned may be undefined or a crash might
occur. This situation is called an array bounds violation. In the case of a
write operation, other data might be overwritten, which is often exploitable to
gain control over a computer system from a remote location over a network.
Checking that a program never violates any of its array bounds is therefore
highly desirable.

Note, however, that the issue of array bounds checking in programs does
not require array logic; the question of whether an array index is within the
bounds of a finite-size array requires one only to keep track of the size of the
array, not of its contents.

As an example, consider the following program fragment, which is meant
to move the elements of an array:

int a[N];

for(int i=0; i<N; i++)
a[i]=a[i+1];

Despite of the fact that the program contains an array, the verification con-
dition for the array-bounds property does not require array logic:

i < N =⇒ (i < N ∧ i + 1 < N) . (7.3)

combination of other theories is to treat the arrays as uninterpreted functions
(see Chap. 3). The index operator is replaced by a function application, where
the array is the (uninterpreted) function, and the index is the only function
argument.

Example 7.3. Consider the following array logic formula, where a is an array
with element type char:
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(i = j ∧ a[j] = ’z’) =⇒ a[i] = ’z’ . (7.4)

The character constant ’z’ can be read as an integer number. Let Fa denote
the uninterpreted function introduced for the array a:

(i = j ∧ Fa(j) = ’z’) =⇒ Fa(i) = ’z’ . (7.5)

By applying Bryant’s reduction (Chap. 3), we obtain

(i = j ∧ F ∗
1 = ’z’) =⇒ F ∗

2 = ’z’ , (7.6)

where

F ∗
1 = f1 and F ∗

2 =

{
f1 : i = j
f2 : otherwise .

(7.7)

The formula can then be shown to be valid by means of a decision procedure
for equality (Chap. 4).

Array updates can be handled by replacing each expression of the form
a{i ←− e} by a fresh variable a′ of array type, and by adding two constraints
that correspond directly to the two cases of the read-over-write axiom:

1. a′[i] = e for the value that is written,
2. ∀j �= i. a′[j] = a[j] for the values that are unchanged.

This is called the write rule, and is an equivalence-preserving transformation
on array logic formulas.

Example 7.4. The formula

a{i←− e}[i] ≥ e (7.8)

is transformed by introducing a new array identifier a′ to replace a{i ←− e}.
Additionally, we add the assumption that a′[i] = e, and obtain

a′[i] = e =⇒ a′[i] ≥ e , (7.9)

which shows the validity of (7.8). The second part of the read-over-write axiom
is needed to show the validity of a formula such as

a[0] = 10 =⇒ a{1 ←− 20}[0] = 10 . (7.10)

As before, the formula is transformed by replacing a{1 ←− 20} with a new
identifier a′ and adding the two constraints described above:

(a[0] = 10 ∧ a′[1] = 20 ∧ (∀j �= 1. a′[j] = a[j])) =⇒ a′[0] = 10 . (7.11)

Again as before, we transform this formula by replacing a and a′ with
uninterpreted-function symbols Fa and Fa′ :
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(Fa(0) = 10 ∧ Fa′(1) = 20 ∧ (∀j �= 1. Fa′(j) = Fa(j))) =⇒ Fa′(0) = 10 .

This simple example shows that array logic can be reduced to combinations of
the index logic and uninterpreted functions, provided that the index logic of-
fers quantifiers. The combination of Presburger arithmetic and uninterpreted
functions is in general undecidable, however, and, thus, we need to restrict
the set of formulas we consider. This is also the basic idea of the reduction
algorithm in the following section.

7.3 A Reduction Algorithm for Array Logic

7.3.1 Array Properties

We define here a restricted class of array logic formulas in order to obtain
decidability. We consider formulas that are Boolean combinations of array
properties.

Definition 7.5 (array property). An array logic formula is called an array
property if and only if it is of the form

∀i1, . . . , ik ∈ TI . φI(i1, . . . , ik) =⇒ φV (i1, . . . , ik) , (7.12)

and satisfies the following conditions:

1. The predicate φI , called the index guard, must follow the grammar

iguard : iguard ∧ iguard | iguard ∨ iguard | iterm ≤ iterm | iterm = iterm

iterm : i1 | . . . | ik | term

term : integer-constant | integer-constant · index-identifier | term + term

The “index-identifier” used in “term” must not be one of i1, . . . , ik.
2. The index variables i1, . . . , ik can only be used in array read expressions

of the form a[ij ].

The predicate φV is called the value constraint.

Example 7.6. The extensionality rule defines the equality of two arrays
a1 as elementwise equality. Extensionality is an array property:

∀i. a1[i] = a2[i] . (7.13)

Note that the index guard is simply true in this case.
Recall the array logic formula (7.2). The first and the third conjunct are

obviously array properties, but recall the second conjunct,

a′ = a{i←− 0} . (7.14)
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Is this an array property as well? As illustrated in Example 7.3, an array
update expression can be replaced by adding two constraints. In our example,
the first constraint is a′[i] = 0, which is obviously an array property. The
second constraint is

∀j �= i. a′[j] = a[j] , (7.15)

and does not comply with the syntax constraints for index guards as given in
Definition 7.5. However, it can be rewritten as

∀j. (j ≤ i− 1 ∨ i + 1 ≤ j) =⇒ a′[j] = a[j] (7.16)

to match the syntactic constraints.

7.3.2 A Reduction Algorithm

We now describe an algorithm that accepts a formula from the array property
fragment of array logic and reduces it to an equisatisfiable formula that uses
the element and index theories. The resulting formula can be further reduced
to propositional logic using the methods described so far.

We assume that the following operators are defined for the index and
element theories, and that we have a decision procedure for the combined
theory:

• For the index type, we assume that linear arithmetic over indices is per-
mitted.

• For the element type, we assume only that equality between two elements
is permitted.

Algorithm 7.3.1 takes an array logic formula from the array property fragment
as input. Note that the transformation of array properties to NNF may turn
a universal quantification over the indices into an existential quantification.
The formula does not contain explicit quantifier alternations, owing to the
syntactic restrictions.

As a first step, the algorithm applies the write rule (see Sect. 7.2) to remove
all array update operators. The resulting formulas contain quantification over
indices, array reads, and subformulas from the element and index theories.

As the formula is in NNF, an existential quantification can be replaced
by a new variable (which is implicitly existentially quantified). The universal
quantifiers ∀i ∈ TI . P (i) are replaced by the conjunction

∧
i∈I(φ) P (i), where

the set I(φ) denotes the index expressions that i might possibly be equal to
�

�

�

�

I(φ)
in the formula φ. This set contains the following elements:

1. All expressions used as an array index in φ that are not quantified vari-
ables.

2. All expressions used inside index guards in φ that are not quantified vari-
ables.

3. If φ contains none of the above, I(φ) is {0} in order to obtain a nonempty
set of index expressions.
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Finally, the array read operators are replaced by uninterpreted functions, as
described in Sect. 7.2.

�

�

�

�

Algorithm 7.3.1: Array-Reduction

Input: An array property formula φA in NNF
Output: A formula φUF in the index and element theories with

uninterpreted functions

1. Apply the write rule to remove all array updates from φA.
2. Replace all existential quantifications of the form ∃i ∈ TI . P (i) by

P (j), where j is a fresh variable.
3. Replace all universal quantifications of the form ∀i ∈ TI . P (i) by

∧

i∈I(φ)

P (i) .

4. Replace the array read operators by uninterpreted functions and
obtain φUF ;

5. return φUF ;

Example 7.7. In order to illustrate Algorithm 7.3.1, we continue the intro-
ductory example by proving the validity of (7.2):

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i ←− 0}

=⇒ (∀x ∈ N0. x ≤ i =⇒ a′[x] = 0) .

That is, we are checking satisfiability of

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′ = a{i←− 0}
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] �= 0) .

(7.17)

By applying the write rule, we obtain

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j �= i. a′[j] = a[j]
∧ (∃x ∈ N0. x ≤ i ∧ a′[x] �= 0) .

(7.18)

In the second step of Algorithm 7.3.1, we instantiate the existential quantifier
with a new variable z ∈ N0:

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a′[i] = 0 ∧ ∀j �= i. a′[j] = a[j]
∧ z ≤ i ∧ a′[z] �= 0) .

(7.19)
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The set I for our example is {i, z}. We therefore replace the two universal
quantifications as follows:

(i < i =⇒ a[i] = 0) ∧ (z < i =⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (i �= i =⇒ a′[i] = a[i]) ∧ (z �= i =⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] �= 0) .

(7.20)

Let us remove the trivially satisfied conjuncts to obtain

(z < i =⇒ a[z] = 0)
∧ a′[i] = 0 ∧ (z �= i =⇒ a′[z] = a[z])
∧ z ≤ i ∧ a′[z] �= 0) .

(7.21)

We now replace the two arrays a and a′ by uninterpreted functions Fa and
Fa′ and obtain

(z < i =⇒ Fa(z) = 0)
∧ Fa′(i) = 0 ∧ (z �= i =⇒ Fa′(z) = Fa(z))
∧ z ≤ i ∧ Fa′(z) �= 0) .

(7.22)

By distinguishing the three cases z < i, z = i, and z > i, it is easy to see that
this formula is unsatisfiable.

7.4 Problems

Problem 7.1 (manual proofs for array logic). Show the validity of (7.2)
using the read-over-write axiom.

Problem 7.2 (undecidability of array logic). Show that the satisfiability
of an array logic formula is undecidable by using a reduction of a two-counter
machine to an array logic formula: given a two-counter machine M , generate
an array logic formula ϕ that is valid if M terminates.

Problem 7.3 (quantifiers and NNF). The transformation steps 3 and 4
of Algorithm 7.3.1 rely on the fact that the formula is in NNF. Provide one
example for each of these steps that shows that the step is unsound if the
formula is not in NNF.

7.5 Bibliographic Notes

The read-over-write axiom (7.1) is due to John McCarthy, who used it to
show the correctness of a compiler for arithmetic expressions [124]. The reads
and writes correspond to loads and stores in a computer memory. Hoare and
Wirth introduced the notation (a, i : e) for a{i ←− e}, and used it to define
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the meaning of assignments to array elements in the PASCAL programming
language [93].

Automatic decision procedures for arrays have been found in automatic
theorem provers since the very beginning. In the context of program verifi-
cation, array logic is often combined with application-specific predicates, for
example to specify properties such as “the array is sorted” or to specify ranges
of indices [164]. Greg Nelson’s theorem prover Simplify [65] has McCarthy’s
read-over-write axiom and appropriate instantiation heuristics built in.

The reduction of array logic to fragments of Presbuger arithmetic with
uninterpreted functions is commonplace. While this combination is in general
undecidable, many restrictions of Presburger arithmetic with uninterpreted
functions have been shown to be decidable. Stump et al. [189] present an
algorithm that first eliminates the array update expressions from the formula
by identifying matching writes. The resulting formula can be decided with an
EUF decision procedure (Chap. 3).

The array property fragment that we used in this chapter was identified by
Bradley, Manna and Sipma [31]. The idea of computing “sufficiently large” sets
of instantiation values is also used in other procedures. For instance, Ghilardi
et al. computed such sets separately for the indices and array elements [84].

7.6 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

a[i] The element with index i of an array a 171

a{i←− e} The array a, where the element with index i has
been replaced by e

171

I(φ) Index set 176
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Pointer Logic

8.1 Introduction

8.1.1 Pointers and Their Applications

This chapter introduces a theory for reasoning about programs that use point-
ers, and describes decision procedures for it. We assume that the reader is
familiar with pointers and their use in programming languages.

A pointer is a program variable whose sole purpose is to refer to some
other program construct. This other construct could be a variable, a procedure
or label, or yet another pointer. Among other things, pointers allow a piece
of code to operate on different sets of data, which avoids inefficient copying
of data.

As an example, consider a program that maintains two arrays of integers,
named A and B, and that both arrays need to be sorted at some point within
the program. Without pointers, the programmer needs to maintain two imple-
mentations of the sorting algorithm, one for A and one for B. Using pointers,
a single implementation of sorting is implemented as a procedure that accepts
a pointer to the first element of an array as an argument. It is called twice,
with the addresses of A and B, respectively, as the argument.

As pointers are a common source of programming errors, most modern pro-
gramming languages try to offer alternatives, e.g., in the form of references or
abstract data containers. Nevertheless, low-level programming languages with
explicit pointers are still frequently used, for example for embedded systems
or operating systems.

The implementation of pointers relies on the fact that the memory cells of
a computer have addresses, i.e., each cell has a unique number. The value of a
pointer is then nothing but such a number. The way the memory cells are ad-
dressed is captured by the concept of the memory model of the architecture
that executes the program.

Definition 8.1 (memory model). A memory model describes the assump-
tions that are made about the way memory cells are addressed. We assume
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that the architecture provides a continuous, uniform address space, i.e., the
set of addresses A is a subinterval of the integers {0, . . . , N − 1}. Each ad-

�

�

�

�
M , A

dress corresponds to a memory cell that is able to store one data word. The
set of data words is denoted by D. A memory valuation M : A −→ D is a

�

�

�

�
D

mapping from a set of addresses A into the domain D of data words.

A variable may require more than one data word to be stored in memory.
For example, this is the case when the variable is of type struct, array, or
double-precision floating-point. Let σ(v) with v ∈ V denote the size (in data

�

�

�

�
σ

words) of v.
The compiler assigns a particular memory location (address) to each

global, and thus, static variable.1 This mapping is called the memory layout,
and is formalized as follows. Let V denote the set of variables.

�

�

�

�
V

Definition 8.2 (memory layout). A memory layout L : V −→ A is a
�

�

�

�
L

mapping from each variable v ∈ V to an address a ∈ A. The address of v is
also called the memory location of v.

The memory locations of the statically allocated variables are usually as-
signed such that they are nonoverlapping (we explain later on how to model
dynamically allocated data structures). Note that the memory layout is not
necessarily continuous, i.e., the compilers may generate a layout that contains
“holes”.2

Example 8.3. Figure 8.1 illustrates a memory layout for a fragment of an
ANSI-C program. The program has six objects, which are named var_a,
var_b, var_c, S, array, and p. The first five objects either are integer vari-
ables or are composed of integer variables. The object named p is a pointer
variable, which we assume to be as wide as an integer.3 The program initializes
p to the address of the variable var_c, which is denoted by &var_c. Besides
the variable definitions, the program also has a function main(), which sets
the value of the variable pointed to by p to 100.

8.1.2 Dynamic Memory Allocation

Pointers also enable the creation of dynamic data structures. Dynamic data
structures rely on an area of memory that is designated for use by objects that

1 Statically allocated variables are variables that are allocated space during the
entire run time of the program. In contrast, the addresses of dynamically allocated
data such as local variables or data on the heap are determined at run time once
the object has been created.

2 A possible reason for such holes is the need for proper alignment. As an example,
many 64-bit architectures are unable to read double-precision floating-point values
from addresses that are not a multiple of 8.

3 This is not always the case; for example, in the x86 16-bit architecture, integers
have 16 bits, whereas pointers are 32 bits wide. In some 64-bit architectures,
integers have 32 bits, whereas pointers have 64 bits.
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int var_a, var_b, var_c;
struct { int x; int y; } S;
int array[4];
int *p = &var_c;

int main() {

*p=100;
}

array[0]

var a

var b

var c

S.x

S.y

array[1]

array[2]

array[3]

p

0

1

2

3

4

5

6

7

8

9

Fig. 8.1. A fragment of an ANSI-C program and a possible memory layout for it

Aside: Pointers and References in Object-Oriented Programming
Separation of data and algorithms is promoted by the concept of object-
oriented programming (OOP). In modern programming languages such as
Java and C++, the explicit use of pointer variables is deprecated. Instead,
the procedures that are associated with an object (the methods) implicitly
receive a pointer to the data members (the fields) of the object instance as
an argument. In C++, the pointer is accessible using the keyword this. All
accesses to the data members are performed indirectly by means of the this
pointer variable.

References, just like pointers, are program variables that refer to a vari-
able or object. The difference between references and pointers is often only
syntactic. As an example, the fact that dereferencing is performed is usually
hidden. In program analysis, references can be treated just as pointers.

are created at the run time of the program. A run time library maintains a list
of the memory regions that are unused. A function, which is part of this library,
allocates a region of given size and returns a pointer to the beginning (lowest
address) of the region. The memory layout therefore changes during the run
time of the program. Memory allocation may be performed an unbounded
number of times (provided enough space is deallocated as well), and thus,
there is no bound on the number of objects that a program can generate.

The function that performs the allocation is called malloc() in C, and is
provided as an operator called new in C++, C#, and Java. In either case, the
size of the region that is requested is passed as an argument. In order to reuse
memory occupied by data structures that are no longer needed, C program-
mers call free, C++ programmers use delete, while Java and C# provide an
automatic garbage collection mechanism. The lifetime of a dynamic object
is the time between its allocation and its deallocation.
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8.1.3 Analysis of Programs with Pointers

All but trivial programs rely on pointers or references in order to separate
between data and algorithms. Decision procedures that are used for program
analysis therefore often need to include reasoning about pointers.

As a simple example, consider the following program fragment, which com-
putes the sum of an array of size 10:

void f(int *sum) {

*sum = 0;

for(i=0; i<10; i++)

*sum = *sum + array[i];
}

The sum is stored in an integer variable that is pointed to by a pointer called
sum. Any analysis method that aims at validating the correctness of this frag-
ment has to take the value of the pointer into account. In particular, the
program is likely to fail if the address held by sum is equal to the address of i.
In this case, we say that *sum is an alias for i. Aliasing that is not anticipated
by the programmer is a common source of problems.

The use of pointers gives rise to program properties that are of high in-
terest. It is well known that many programs fail owing to incorrect use of
pointer variables. A very common problem in programs is dereferencing of
pointer variables that do not point to a proper object. The value 0 is typically
reserved as a designated NULL pointer. It is guaranteed that no object, either
statically or dynamically allocated, has this address. This value can therefore
be used to indicate special cases, for example the end of a linked list. How-
ever, if such a pointer is – by mistake – dereferenced, modern architectures
typically generate an exception, which terminates the program.

Programming languages that offer explicit deallocation face another prob-
lem. In the following program fragment, an array-type object is allocated and
deallocated:

int *p, *q;

p = new int[10];
q = &p[3];
delete p;

*q = 2;

Note that the address of the fourth element of the array is stored in q, and that
this pointer is dereferenced after the deallocation of the array. In a variant of
the program above, the library that manages the dynamically allocated mem-
ory may have reassigned the space used for the array by that time, and thus
another object might be overwritten by writing to *q. Such errors are hard
to reproduce, as they depend on the exact memory layout of the architecture.
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They often remain undetected despite extensive testing. The detection of such
errors is therefore an important application for static program analysis tools.

Aside: Alias Analysis
Alias analysis has a significant role in pointer-related reasoning about soft-
ware, such as the analysis performed by optimizing compilers. Alias analysis
may be performed at various levels of precision. For example, alias analysis
may be field sensitive or insensitive, interprocedural or intraprocedural, and
may or may not be sensitive to the control flow. Alias analysis is a special
case of static analysis, and is typically performed as a may-analysis, that is,
it determines the set of variables that a given pointer may point to – this is
called the “points-to” set. In other words, variables that are not in this set
cannot be pointed to by this pointer. For example, given an instruction such
as

*p=0;

may-analysis permits us to conclude that any variable that is not in the points-
to set of p is also not modified by this assignment. In the case of an optimizing
compiler, this permits us to determine the set of variables that can be cached
safely in processor registers.

Alias analysis is performed by maintaining a points-to set for each pointer
(and, if desired, for each program location), and updating these sets accord-
ing to the program statements. The algorithm terminates once the sets have
saturated, i.e., do not change anymore.

As an example, consider a control-flow-insensitive analysis of a program
with three statements:

p=q;
q=&i;
p=&j;

The points-to sets of p and q are initially empty. Processing the first statement
results in no change. The second statement adds i to the points-to set of q,
and the third adds j to the points-to set of p. Owing to the first statement,
the set of q is added to that of p and, thereafter, the two sets are saturated.

8.2 A Simple Pointer Logic

8.2.1 Syntax

There are many variants of pointer logic, each with a different syntax and
meaning. The more complex ones are often undecidable. We define a simple
logic here, with the goal of making the problem of deciding formulas in this
logic easier to solve.
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Definition 8.4 (pointer logic). The syntax of a formula in pointer logic is
defined by the following rules:

formula : formula ∧ formula | ¬formula | (formula) | atom

atom : pointer = pointer | term = term |

pointer < pointer | term < term

pointer : pointer-identifier | pointer + term | (pointer) |

&identifier | & ∗ pointer | ∗ pointer | NULL

term : identifier | ∗ pointer | term op term | (term) |

integer-constant | identifier [ term ]

op : + | −

The variables represented by pointer-identifier are assumed to be of pointer
type, whereas the variables represented by identifier are assumed to be integers
or an array of integers.4 Note that the grammar allows pointer arithmetic,
whereas it prohibits a direct conversion of an integer into a pointer or vice
versa. This is motivated by the fact that the conversion of a pointer to an
integer may actually fail in a number of architectures, owing to the fact that
pointers are wider than the standard integer type.5

Example 8.5. Let p, q denote pointer identifiers, and let i, j denote integer
identifiers. The following expressions are well-formed according to the gram-
mar above:

• ∗(p + i) = 1,
• ∗(p + ∗p) = 0,
• p = q ∧ ∗p = 5,
• ∗ ∗ ∗ ∗ ∗p = 1,
• p < q.

The following expressions are not permitted by the grammar:

• p + i,
• p = i,
• ∗(p + q),
• ∗1 = 1,
• p < i.

Note that the grammar above encompasses all of integer linear arithmetic
(Chap. 5) and also a fragment of array logic (Chap. 7). In practice, a logic for
pointers is typically combined with a logic for the program expressions, such
as bit-vector arithmetic.
4 The syntax is clearly inspired by that of ANSI-C; Note, however, that we deviate

from the ANSI-C syntax in a few points. As an example, in ANSI-C, an array
identifier is synonymous with its address.

5 Much as in C/C++, an indirect conversion by means of the dereferencing operator
is still possible.
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8.2.2 Semantics

There are numerous ways to assign a meaning to the expressions defined
above. We define the semantics by referring to a specific memory layout L
(Definition 8.2) and a specific memory valuation M (Definition 8.1), that is,
pointer logic formulas are predicates on M,L pairs. The definition uses a
reduction to integer arithmetic and array logic, and thus we treat M and L
as array types. We also assume that D (the set of data words) is contained in
the set of integers.

Definition 8.6 (semantics of pointer logic). As before let L denote a
memory layout and let M denote a valuation of the memory. Let LP denote
the set of pointer logic expressions, and let LD denote the set of expressions
permitted by the logic for the data words. We define a meaning for e ∈ LP

using the function �·� : LP −→ LD. The function �e� is defined recursively as
given in Fig. 8.2. The expression e ∈ LP is valid if and only if �e� is valid.

�f1 ∧ f2�
.
= �f1� ∧ �f2�

�¬f�
.
= ¬�f�

�p1 = p2�
.
= �p1� = �p2� where p1, p2 are pointer expressions

�p1 < p2�
.
= �p1� < �p2� where p1, p2 are pointer expressions

�t1 = t2�
.
= �t1� = �t2� where t1, t2 are terms

�t1 < t2�
.
= �t1� < �t2� where t1, t2 are terms

�p�
.
= M [L[p]] where p is a pointer identifier

�p + t�
.
= �p� + �t� where p is a pointer expression, and t is a term

�&v�
.
= L[v] where v ∈ V variable

�& ∗ p�
.
= �p� where p is a pointer expression

�NULL�
.
= 0

�v�
.
= M [L[v]] where v ∈ V is a variable

�∗p�
.
= M [�p�] where p is a pointer expression

�t1 op t2�
.
= �t1� op �t2� where t1, t2 are terms

�c�
.
= c where c is an integer constant

�v[t]�
.
= M [L[v] + �t�] where v is an array identifier, and t is a term

Fig. 8.2. Semantics of pointer expressions

Observe that a pointer p points to a variable x if M [L[p]] = L[x], that is, the
value of p is equal to the address of x. As a shorthand, we write p →֒ z to

�

�

�

�
p →֒ z

mean that p points to some memory cell such that ∗p = z. Observe also that
the meaning of pointer arithmetic, for example p + i, does not depend on the
type of the object that p points to.6

6 In contrast, the semantics of ANSI-C requires that an integer that is added to a
pointer p is multiplied by the size of the type that p points to.
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Example 8.7. Consider the following expression, where a is an array identi-
fier:

∗((&a) + 1) = a[1] . (8.1)

The semantic definition of (8.1) expands as follows:

�∗((&a) + 1) = a[1]� ⇐⇒ �∗((&a) + 1)� = �a[1]� (8.2)

⇐⇒ M [�(&a) + 1�] = M [L[a] + �1�] (8.3)

⇐⇒ M [�&a� + �1�] = M [L[a] + 1] (8.4)

⇐⇒ M [L[a] + 1] = M [L[a] + 1] (8.5)

Equation (8.5) is obviously valid, and thus, so is (8.1). Note that the translated
formula must evaluate to true for any L and M and, thus, the following
formula is not valid:

∗p = 1 =⇒ x = 1 . (8.6)

For p �= &x, this formula evaluates to false.

8.2.3 Axiomatization of the Memory Model

Formulas in pointer logic may exploit assumptions made about the memory
model. The set of these assumptions depends highly on the architecture. Here,
we formalize properties that most architectures comply with, and thus that
many programs rely on.

On most architectures, the following two formulas are valid, and hence can
be safely assumed by programmers:

&x �= NULL , (8.7)

&x �= &y . (8.8)

Equation (8.7) translates into L[x] �= 0 and relies on the fact that no object
has address 0. Equation (8.8) relies on the fact that the memory layout assigns
nonoverlapping addresses to the objects. We define a series of memory model
axioms in order to formalize these properties.

Memory Model Axiom 1 (“No object has address 0”) The fact “no
object has address 0” is easily formalized:7

∀v ∈ V. L[v] �= 0 . (8.9)

7 Note that the ANSI-C standard does not actually guarantee that the symbolic
constant NULL is represented by a bit vector consisting of zeros; however, it guar-
antees that the NULL pointer compares to the integer zero and can be obtained
by converting the integer zero to a pointer type.
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The easiest way to ensure that (8.8) is valid is to assume that ∀v1, v2 ∈ V. v1 �=
v2 =⇒ L[v1] �= L[v2]. However, this assumption is often not strong enough,
as objects with size greater or equal to two may still overlap. We therefore
assume the following two conditions, which together are stronger.

Memory Model Axiom 2 (“Objects have size at least one”) The fact
“an object has size at least one” is easily captured by:

∀v ∈ V. σ(v) ≥ 1 . (8.10)

Memory Model Axiom 3 (“Objects do not overlap”) Different objects
do not share any addresses:

∀v1, v2 ∈ V. v1 �= v2 =⇒ {L[v1], . . . , L[v1] + σ(v1)− 1}∩
{L[v2], . . . , L[v2] + σ(v2)− 1} = ∅ .

(8.11)

Program analysis tools that are applied to code that relies on additional,
architecture-specific guarantees, may require a larger set of memory model
axioms. Examples are byte ordering and endianness, and specific assumptions
about alignment.

8.2.4 Adding Structure Types

Structure types are a convenient way to implement data structures. Structure
types can be added to our pointer logic as a purely syntactic extension, as we
shall soon see. We assume that the fields of the structure types are named,
and write s.f to denote the value of the field f in the structure s.

Formally, we can view structure types as “syntactic sugar” for array types,
and record the following shorthands. Each field of the structure is assigned
a unique offset. Let o(f) denote the offset of field f . We then define the

�

�

�

�

o(f)
meaning of s.f as follows: �

�

�

�
s.f

s.f
.
= ∗((&s) + o(f)) . (8.12)

For convenience, we introduce two additional shorthands. Following the PAS-
CAL and ANSI-C syntax, we write p->f for (∗p).f (this shorthand is not to

�

�

�

�
p->f

be confused with logical implication or with p →֒ a). Adopting some notation
from separation logic (see the aside on separation logic), we also extend the
p →֒ a notation by introducing p →֒ a, b, c, . . . as a shorthand for

∗(p + 0) = a ∧
∗(p + 1) = b ∧
∗(p + 2) = c . . . .

(8.13)
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8.3 Modeling Heap-Allocated Data Structures

8.3.1 Lists

Heap-allocated data structures play an important role in programs, and are
prone to pointer-related errors. We now illustrate how to model a number of
commonly used data structures using pointer logic.

After the array, the simplest dynamically allocated data structure is the
linked list . It is typically realized by means of a structure type that contains
fields for a next pointer and the data that is to be stored in the list.

As an example, consider the following list. The first field is named a and is
an ASCII character, serving as the “payload”, and the second field is named
n, and is the pointer to the next element of the list. Following ANSI-C syntax,
we use ’x’ to denote the integer that represents the ASCII character “x”:

. . .

p ’e’ ’x’ ’t’

0

’t’

The list is terminated by a NULL pointer, which is denoted by “0” in the
diagram above. A way of modeling this list is to use the following formula:

p →֒ ’t’, p1

∧ p1 →֒ ’e’, p2

∧ p2 →֒ ’x’, p3

∧ p3 →֒ ’t’, NULL .

(8.14)

This way of specifying lists is cumbersome, however. Therefore, disregard-
ing the payload field, we first introduce a recursive shorthand for the i-th
member of a list:8

list-elem(p, 0)
.
= p ,

list-elem(p, i)
.
= list-elem(p, i− 1)->n for i ≥ 1 .

(8.15)

We now define the shorthand list(p, l) to denote a predicate that is true if p
�

�

�

�
list

points to a NULL-terminated acyclic list of length l:

list(p, l)
.
= list-elem(p, l) = NULL . (8.16)

A linked list is cyclic if the pointer of the last element points to the first one:

. . . .

’e’ ’x’ ’t’’t’p

Consider the following variant my-list(p, l), intended to capture the fact
that p points to such a cyclic list of length l ≥ 1:

8 Note that recursive definitions of this form are, in general, only embeddable into
our pointer logic if the second argument is a constant.



8.3 Modeling Heap-Allocated Data Structures 191

my-list(p, l)
.
= list-elem(p, l) = p . (8.17)

Does this definition capture the concept properly? The list in the dia-
gram above satisfies my-list(p, 4). Unfortunately, the following list satisfies
my-list(p, 4) just as well:

.

’t’p

This is due to the fact that our definition does not preclude sharing of elements
of the list, despite the fact that we had certainly intended to specify that
there are l disjoint list elements. Properties of this kind are often referred to
as separation properties. A way to assert that the list elements are disjoint is
to define a shorthand overlap as follows:

overlap(p, q)
.
= p = q ∨ p + 1 = q ∨ p = q + 1 . (8.18)

This shorthand is then used to state that all list elements are pairwise disjoint:

list-disjoint(p, 0)
.
= true ,

list-disjoint(p, l)
.
= list-disjoint(p, l − 1)∧

∀0 ≤ i < l − 1. ¬overlap(list-elem(p, i), list-elem(p, l − 1)) .
(8.19)

Note that the size of this formula grows quadratically in l. As separation
properties are frequently needed, more concise notations have been developed
for this concept, for example separation logic (see the aside on that topic).
Separation logic can express such properties with formulas of linear size.

8.3.2 Trees

We can implement a binary tree by adding another pointer field to each el-
ement of the data structure (see Fig. 8.3). We denote the pointer to the
left-hand child node by l, and the pointer to the right-hand child by r.

In order to illustrate a pointer logic formula for trees, consider the tree in
Fig. 8.3, which has one integer x as payload. Observe that the integers are
arranged in a particular fashion: the integer of the left-hand child of any node
n is always smaller than the integer of the node n itself, whereas the integer of
the right-hand child of node n is always larger than the integer of the node n.
This property permits lookup of elements with a given integer value in time
O(h), where h is the height of the tree. The property can be formalized as
follows:

(n.l �= NULL =⇒ n.l->x < n.x)
∧ (n.r �= NULL =⇒ n.r->x > n.x) .

(8.22)

Unfortunately, (8.22) is not strong enough to imply lookup in time O(h). For
this, we need to establish the ordering over the integers of an entire subtree.
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Aside: Separation Logic
Theories for dynamic data structures are frequently used for proving that

memory cells do not alias. While it is possible to model the statement that
a given object does not alias with other objects with pairwise comparison,
reasoning about such formulation scales poorly. It requires enumeration of all
heap-allocated objects, which makes it difficult to reason about a program in
a local manner.

John Reynolds’ separation logic [165] addresses both problems by introduc-
ing a new binary operator “∗”, as in “P ∗ Q”, which is called a separating
conjunction. The meaning of ∗ is similar to the standard Boolean conjunc-
tion, i.e., P ∧ Q, but it also asserts that P and Q reason about separate,
nonoverlapping portions of the heap. As an example, consider the following
variant of the list predicate:

list(p, 0)
.
= p = NULL

list(p, l)
.
= ∃q. p →֒ z, q ∧ list(q, l − 1) for l ≥ 1 .

(8.20)

Like our previous definition, the definition above suffers from the fact that
some memory cells of the elements of the list might overlap. This can be
mended by replacing the standard conjunction in the definition above by a
separating conjunction:

list(p, l)
.
= ∃q. p →֒ z, q ∗ list(q, l − 1) . (8.21)

This new list predicate also asserts that the memory cells of all list elements
are pairwise disjoint. Separation logic, in its generic form, is not decidable,
but a variety of decidable fragments have been identified.

..

83

5

1 4

. .

p

0 0 0 0

0 0

Fig. 8.3. A binary tree that represents a set of integers
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We define a predicate tree-reach(p, q), which holds if q is reachable from p in
one step:

tree-reach(p, q)
.
= p �= NULL ∧ q �= NULL∧

(p = q ∨ p->l = q ∨ p->r = q) .
(8.23)

In order to obtain a predicate that holds if and only if q is reachable from
p in any number of steps, we define the transitive closure of a given binary
relation R.

Definition 8.8 (transitive closure). Given a binary relation R, the tran-
sitive closure TCR relates x and y if there are z1, z2, . . . , zn such that

xRz1 ∧ z1Rz2 ∧ . . . ∧ znRy .

Formally, transitive closure can be defined inductively as follows:

TC
1
R(p, q)

.
= R(p, q) ,

TC
i
R(p, q)

.
= ∃p′. TC

i−1
R (p, p′) ∧R(p′, q)

TC(p, q)
.
= ∃i. TC

i
R(p, q) .

(8.24)

Using the transitive closure of our tree-reach relation, we obtain a new relation
tree-reach*(p, q) that holds if and only if q is reachable from p in any number
of steps:

tree-reach*(p, q) ⇐⇒ TCtree-reach(p, q) . (8.25)

Using tree-reach*, it is easy to strengthen (8.22) appropriately:

(∀p. tree-reach*(n.l, p) =⇒ p->x < n.x)
∧ (∀p. tree-reach*(n.r, p) =⇒ p->x > n.x) .

(8.26)

Unfortunately, the addition of the transitive closure operator can make even
simple logics undecidable, and thus, while convenient for modeling, it is a bur-
den for automated reasoning. We restrict the presentation below to decidable
cases by considering only special cases.

8.4 A Decision Procedure

8.4.1 Applying the Semantic Translation

The semantic translation introduced in Sect. 8.2.2 not only assigns meaning
to the pointer formulas, but also gives rise to a simple decision procedure. The
formulas generated by this semantic translation contain array read operators
and linear arithmetic over the type that is used for the indices. This may
be the set of integers (Chap. 5) or the set of bit vectors (Chap. 6). It also
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contains at least equalities over the type that is used to model the contents of
the memory cells. We assume that this is the same type as the index type. As
we have seen in Chap. 7, such a logic is decidable. Care has to be taken when
extending the pointer logic with quantification, as array logic with arbitrary
quantification is undecidable.

A straightforward decision procedure for pointer logic therefore first ap-
plies the semantic translation to a pointer formula ϕ to obtain a formula ϕ′

in the combined logic of linear arithmetic over integers and arrays of integers.
The formula ϕ′ is then passed to the decision procedure for the combined
logic. As the formulas ϕ and ϕ′ are equisatisfiable (by definition), the result
returned for ϕ′ is also the correct result for ϕ.

Example 8.9. Consider the following pointer logic formula, where x is a vari-
able, and p identifies a pointer:

p = &x ∧ x = 1 =⇒ ∗p = 1 . (8.27)

The semantic definition of this formula expands as follows:

�p = &x ∧ x = 1 =⇒ ∗p = 1�
⇐⇒ �p = &x� ∧ �x = 1� =⇒ �∗p = 1�
⇐⇒ �p� = �&x� ∧ �x� = 1 =⇒ �∗p� = 1
⇐⇒ M [L[p]] = L[x] ∧M [L[x]] = 1 =⇒ M [M [L[p]]] = 1 .

(8.28)

A decision procedure for array logic and equality logic easily concludes that
the formula above is valid, and thus, so is (8.27).

As an example of an invalid formula, consider

p →֒ x =⇒ p = &x . (8.29)

The semantic definition of this formula expands as follows:

�p →֒ x =⇒ p = &x�
⇐⇒ �p →֒ x� =⇒ �p = &x�
⇐⇒ �∗p = x� =⇒ �p� = �&x�
⇐⇒ �∗p� = �x� =⇒ M [L[p]] = L[x]
⇐⇒ M [M [L[p]]] = M [L[x]] =⇒ M [L[p]] = L[x]

(8.30)

A counterexample to this formula is the following:

L[p] = 1, L[x] = 2, M [1] = 3, M [2] = 10, M [3] = 10 . (8.31)

The values of M and L in the counterexample are best illustrated with a
picture:

1

3 1010

0 2 3

p x
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Applying the Memory Model Axioms

A formula may rely on one of the memory model axioms defined in Sect. 8.2.3.
As an example, consider the following formula:

σ(x) = 2 =⇒ &y �= &x + 1 . (8.32)

The semantic translation yields:

σ(x) = 2 =⇒ L[y] �= L[x] + 1 . (8.33)

This formula can be shown to be valid by instantiating Memory Model Ax-
iom 3. After instantiating v1 with x and v2 with y, we obtain

{L[x], . . . , L[x] + σ(x)− 1} ∩ {L[y], . . . , L[y] + σ(y)− 1} = ∅ . (8.34)

We can transform the set expressions in (8.34) into linear arithmetic over the
integers as follows:

(L[x] + σ(x)− 1 < L[y]) ∨ (L[x] > L[y] + σ(y)− 1) . (8.35)

Using σ(x) = 2 and σ(y) ≥ 1 (Memory Model Axiom 2), we can conclude,
furthermore, that

(L[x] + 1 < L[y]) ∨ (L[x] > L[y]) . (8.36)

Equation (8.36) is strong enough to imply L[y] �= L[x] + 1, which proves that
Eq. (8.32) is valid.

8.4.2 Pure Variables

The semantic translation of a pointer formula results in a formula that we
can decide using the procedures described in this book. However, the seman-
tic translation down to memory valuations places an undue burden on the
underlying decision procedure, as illustrated by the following example (sym-
metry of equality):

�x = y =⇒ y = x� (8.37)

⇐⇒ �x = y� =⇒ �y = x� (8.38)

⇐⇒ M [L[x]] = M [L[y]] =⇒ M [L[y]] = M [L[x]] . (8.39)

A decision procedure for array logic and equality logic is certainly able to
deduce that (8.39) is valid. Nevertheless, the steps required for solving (8.39)
obviously exceed the effort required to decide

x = y =⇒ y = x . (8.40)

In particular, the semantic translation does not exploit the fact that x and
y do not actually interact with any pointers. A straightforward optimization
is therefore the following: if the address of a variable x is not referred to, we
translate it to a new variable Υx instead of M [L[x]]. A formalization of this
idea requires the following definition:
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Definition 8.10 (pure variables). Given a formula ϕ with a set of variables
V , let P(ϕ) ⊆ V denote the subset of ϕ’s variables that are not used within
an argument of the “&” operator within ϕ. These variables are called pure.

As an example, P(&x = y) is {y}. We now define a new translation function
�·�P . The definition of �e�P is identical to the definition of �e� unless e denotes
a variable in P(ϕ). The new definition is:

�v�P
.
= Υv for v ∈ P(ϕ)

�v�P
.
= M [L[v]] for v ∈ V \ P(ϕ)

Theorem 8.11. The translation using pure variables is equisatisfiable with
the semantic translation:

�ϕ�P ⇐⇒ �ϕ� .

Example 8.12. Equation (8.38) is now translated as follows without referring
to a memory valuation, and thus no longer burdens the decision procedure for
array logic:

�x = y =⇒ y = x�P (8.41)

⇐⇒ �x = y =⇒ y = x�P (8.42)

⇐⇒ �x = y�P =⇒ �y = x�P (8.43)

⇐⇒ Υx = Υy =⇒ Υy = Υx . (8.44)

8.4.3 Partitioning the Memory

The translation procedure can be optimized further using the following ob-
servation: the run time of a decision procedure for array logic depends on the
number of different expressions that are used to index a particular array (see
Chap. 7). As an example, consider the pointer logic formula

∗p = 1 ∧ ∗q = 1 , (8.45)

which – using our optimized translation – is reduced to

M [Υp] = 1 ∧M [Υq] = 1 . (8.46)

The pointers p and q might alias, but there is no reason why they have to.
Without loss of generality, we can therefore safely assume that they do not
alias and, thus, we partition M into M1 and M2:

M1[Υp] = 1 ∧M2[Υq] = 1 . (8.47)

While this has increased the number of array variables, the number of different
indices per array has decreased. Typically, this improves the performance of
a decision procedure for array logic.
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This transformation cannot always be applied, which is illustrated by the
following example:

p = q =⇒ ∗p = ∗q . (8.48)

This formula is obviously valid, but if we partition as before, the translated
formula is no longer valid:

Υp = Υq =⇒ M1[Υp] = M2[Υq] . (8.49)

Unfortunately, deciding if the optimization is applicable is in general as hard
as deciding ϕ itself. We therefore settle for an approximation based on a
syntactic test. This approximation is conservative, i.e., sound, while it may
not result in the best partitioning that is possible in theory.

Definition 8.13. We say that two pointer expressions p and q are related
directly by a formula ϕ if both p and q are used inside the same relational
expression in ϕ and that the expressions are related transitively if there is a
pointer expression p′ that relates to p and relates to q. We write p ≈ q if p

�

�

�

�
p ≈ q

and q are related directly or transitively.

The relation ≈ induces a partitioning of the pointer expressions in ϕ. We
number these partitions 1, . . . , n. Let I(p) ∈ {1, . . . , n} denote the index of
the partition that p is in. We now define a new translation �·�≈, in which we use
a separate memory valuation MI(p) when p is dereferenced. The definition of
�e�≈ is identical to the definition of �e�P unless e is a dereferencing expression.
In this case, we use the following definition:

�∗p�≈
.
= MI(p)(�p�≈) .

Theorem 8.14. Translation using memory partitioning results in a formula
that is equisatisfiable with the result of the semantic translation:

∃α1. α1 |= �ϕ�≈ ⇐⇒ ∃α2. α2 |= �ϕ� .

Note that the theorem relies on the fact that our grammar does not permit
explicit restrictions on the memory layout L. The theorem no longer holds as
soon as this restriction is lifted (see Problem 8.5).

8.5 Rule-Based Decision Procedures

With pointer logics expressive enough to model interesting data structures,
one often settles for incomplete, rule-based procedures. The basic idea of such
procedures is to define a fragment of pointer logic enriched with predicates
for specific types of data structures (e.g., lists or trees) together with a set of
proof rules that are sufficient to prove a wide range of verification conditions
that arise in practice. The soundness of these proof rules is usually shown
with respect to the definitions of the predicates, which implies soundness of
the decision procedure. There are only a few known proof systems that are
provably complete.
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8.5.1 A Reachability Predicate for Linked Structures

As a simple example of this approach, we present a variant of a calculus for
reachability predicates introduced by Greg Nelson [135]. Further rule-based
reasoning systems are discussed in the bibliographic notes at the end of this
chapter.

We first generalize the list-elem shorthand used before for specifying linked
lists by parameterizing it with the name of the field that holds the pointer
to the “next” element. Suppose that f is a field of a structure and holds a
pointer. The shorthand follow

f
n(q) stands for the pointer that is obtained by

starting from q and following the field f , n times:

follow
f
0 (p)

.
= p

follow
f
n(p)

.
= follow

f
n−1(p)->f .

(8.50)

If follow
f
n(p) = q holds, then q is reachable in n steps from p by following f .

We say that q is reachable from p by following f if there exists such n. Using
this shorthand, we enrich the logic with just a single predicate for list-like
data structures, denoted by

p
f
→
x

q , (8.51)

which is called a reachability predicate. It is read as “q is reachable from
p following f , while avoiding x”. It holds if two conditions are fulfilled:

1. There exists some n such that q is reachable from p by following f n times.
2. x is not reachable in fewer than n steps from p following f .

This can be formalized using follow() as follows:

p
f
→
x

q ⇐⇒ ∃n.(follow
f
n(p) = q ∧ ∀m < n.follow

f
m(p) �= x) . (8.52)

We say that a formula is a reachability predicate formula if it contains
the reachability predicate.

Example 8.15. Consider the following software verification problem. The fol-
lowing program fragment iterates over an acyclic list and searches for a list
entry with payload a:

struct S { struct S *nxt; int payload; } *list;

...
bool find(int a) {

for(struct S *p=list; p!=0; p=p->nxt)
if(p->payload==a) return true;

return false;
}
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We can specify the correctness of the result returned by this procedure using
the following formula:

find(a) ⇐⇒ ∃p′.(list
nxt
→
0

p′ ∧ p′->payload = a) . (8.53)

Thus, find(a) is true if the following conditions hold:

1. There is a list element that is reachable from list by following nxt without
passing through a NULL pointer.

2. The payload of this list element is equal to a.

We annotate the beginning of the loop body in the program above with the
following loop invariant, denoted by INV:

INV := list
nxt
→
0

p ∧ (∀q �= p. list
nxt
→
p

q =⇒ q->payload �= a) . (8.54)

Informally, we make the following argument: first, we show that the program
maintains the loop invariant INV; then, we show that INV implies our property.

Formally, this is shown by means of four verification conditions. The
validity of all of these verification conditions implies the property. We use the
notation e[x/y] to denote the expression e in which x is replaced by y.

IND-BASE := p = list =⇒ INV (8.55)

IND-STEP := (INV ∧ p->payload �= a) =⇒ INV[p/p->nxt ] (8.56)

VC-P1 := (INV ∧ p->payload = a)

=⇒ ∃p′.(list
nxt
→
0

p′ ∧ p′->payload = a)

(8.57)

VC-P2 := (INV ∧ p = 0) =⇒ ¬∃p′.(list
nxt
→
0

p′ ∧ p′->payload = a) (8.58)

The first verification condition, IND-BASE, corresponds to the induction base
of the inductive proof. It states that INV holds upon entering the loop, because
at that point p = list . The formula IND-STEP corresponds to the induction
step: it states that the loop-invariant is maintained if another loop iteration
is executed (i.e., p->payload �= a).

The formulas VC-P1 and VC-P2 correspond to the two cases of leaving
the find function: VC-P1 establishes the property if true is returned, and
VC-P2 establishes the property if false is returned. Proving these verification
conditions therefore shows that the program satisfies the required property.

8.5.2 Deciding Reachability Predicate Formulas

As before, we can simply expand the definition above and obtain a semantic
reduction. As an example, consider the verification condition labeled IND-

BASE in Sect. 8.5.1:
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p = list =⇒ INV (8.59)

⇐⇒ p = list =⇒ list
nxt
→
0

p ∧ ∀q �= p. list
nxt
→
p

q =⇒ q->payload �= a (8.60)

⇐⇒ list
nxt
→
0

list ∧ ∀q �= list . (list
nxt
→
list

q =⇒ q->payload �= a) (8.61)

⇐⇒ (∃n. follow
nxt
n (list) = list ∧ ∀m < n. follow

nxt
m (list) �= list)∧

(∀q �= list . ((∃n. follow
nxt
n (list) = q ∧ ∀m < n. follow

nxt
m (list) �= list)

=⇒ q->payload �= a)) . (8.62)

Equation (8.62) is argued to be valid as follows. In the first conjunction,
instantiate n with 0. In the second conjunct, observe that q �= list , and thus
any n satisfying ∃n. follow

nxt
n (list) = q must be greater than 0. Finally, observe

that follow
nxt
m (list) �= list is invalid for m = 0, and thus the left-hand side of

the implication is false.
However, note that the formulas above contain many existential and uni-

versal quantifiers over natural numbers and pointers. Applying the semantic
reduction therefore does not result in a formula that is in the array prop-
erty fragment defined in Chap. 7. Thus, the decidability result shown in this
chapter does not apply here. How can such complex reachability predicate
formulas be solved?

Using Rules

In such situations, the following technique is frequently applied: rules are de-
rived from the semantic definition of the predicate, and then they are applied
to simplify the formula.

p
f
→
x

q ⇐⇒ (p = q ∨ (p 
= x ∧ p->f
f
→
x

q)) (A1)

(p
f
→
x

q ∧ q
f
→
x

r) =⇒ p
f
→
x

r (A2)

p
f
→
x

q =⇒ p
f
→
q

q (A3)

(p
f
→
y

x ∧ p
f
→
z

y) =⇒ p
f
→
z

x (A4)

(p
f
→
x

x ∨ p
f
→
y

y) =⇒ (p
f
→
y

x ∨ p
f
→
x

y) (A5)

(p
f
→
y

x ∧ p
f
→
z

y) =⇒ x
f
→
z

y (A6)

p->f
f
→
q

q ⇐⇒ p->f
f
→
p

q (A7)

Fig. 8.4. Rules for the reachability predicate
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The rules provided in [135] for our reachability predicate are given in
Fig. 8.4. The first rule (A1) corresponds to a program fragment that follows
field f once. If q is reachable from p, avoiding x, then either p = q (we are
already there) or p �= x, and we can follow f from p to get to a node from
which q is reachable, avoiding x. We now prove the correctness of this rule.

Proof. We first expand the definition of our reachability predicate:

p
f
→
x

q ⇐⇒ ∃n. (follow
f
n(p) = q ∧ ∀m < n. follow

f
m(p) �= x) . (8.63)

Observe that for any natural n, n = 0 ∨ n > 0 holds, which we can therefore
add as a conjunct:

⇐⇒ ∃n. ((n = 0 ∨ n > 0)∧

follow
f
n(p) = q ∧ ∀m < n. follow

f
m(p) �= x) .

(8.64)

This simplifies as follows:

⇐⇒ ∃n. p = q ∨ (n > 0 ∧ follow
f
n(p) = q ∧ ∀m < n. follow

f
m(p) �= x) (8.65)

⇐⇒ p = q ∨ ∃n > 0. (follow
f
n(p) = q ∧ ∀m < n. follow

f
m(p) �= x) . (8.66)

We replace n by n′ + 1 for natural n′:

⇐⇒ p = q ∨ ∃n′. (follow
f
n′+1(p) = q ∧ ∀m < n′ + 1. follow

f
m(p) �= x) . (8.67)

As follow
f
n′+1(p) = follow

f
n′(p->f), this simplifies to

⇐⇒ p = q ∨ ∃n′. (follow
f
n′(p->f) = q ∧ ∀m < n′ + 1. follow

f
m(p) �= x) .(8.68)

By splitting the universal quantification into the two parts m = 0 and m ≥ 1,
we obtain

⇐⇒ p = q ∨ ∃n′. (follow
f
n′(p->f) = q ∧

p �= x ∧ ∀1 ≤ m < n′ + 1. follow
f
m(p) �= x) .

(8.69)

The universal quantification is rewritten:

⇐⇒ p = q ∨ ∃n′. (follow
f
n′(p->f) = q ∧

p �= x ∧ ∀m < n′. follow
f
m(p->f) �= x) .

(8.70)

As the first and the third conjunct are equivalent to the definition of p->f
f
→
x

q,

the claim is shown.

There are two simple consequences of rule A1:

p
f
→
x

p and p
f
→
p

q ⇐⇒ p = q . (8.71)

In the following example we use these consequences to prove (8.61), the reach-
ability predicate formula for our first verification condition.
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Example 8.16. Recall (8.61):

list
nxt
→
0

list ∧ ∀q �= list . (list
nxt
→
list

q =⇒ q->payload �= a) . (8.72)

The first conjunct is a trivial instance of the first consequence. To show the
second conjunct, we introduce a Skolem variable q′ for the universal quan-
tifier: 9

(q′ �= list ∧ list
nxt
→
list

q′) =⇒ q′->payload �= a . (8.73)

By the second consequence, the left-hand side of the implication is false.

Even when the axioms are used, however, reasoning about a reachabil-
ity predicate remains tedious. The goal is therefore to devise an automatic
decision procedure for a logic that includes a reachability predicate. We men-
tion several decision procedures for logics with reachability predicates in the
bibliographical notes.

8.6 Problems

8.6.1 Pointer Formulas

Problem 8.1 (semantics of pointer formulas). Determine if the following
pointer logic formulas are valid using the semantic translation:

1. x = y =⇒ &x = &y .
2. &x �= x .
3. &x �= &y + i .
4. p →֒ x =⇒ ∗p = x .
5. p →֒ x =⇒ p->f = x .
6. (p1 →֒ p2, x1 ∧ p2 →֒ NULL, x2) =⇒ p1 �= p2 .

Problem 8.2 (modeling dynamically allocated data structures).

1. What data structure is modeled by my-ds(q, l) in the following? Draw an
example.

c(q, 0)
.
= (∗q).p = NULL

c(q, i)
.
= (∗list-elem(q, i)).p = list-elem(q, i− 1) for i ≥ 1

my-ds(q, l)
.
= list-elem(q, l) = NULL ∧ ∀0 ≤ i < l. c(q, i)

2. Write a recursive shorthand DAG(p) to denote that p points to the root
of a directed acyclic graph.

9 A Skolem variable is a ground variable introduced to eliminate a quantifier, i.e.,
∀x.P (x) is valid iff P (x′) is valid for a new variable x′. This is a special case of
Skolemization, which is named after Thoralf Skolem.
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3. Write a recursive shorthand tree(p) to denote that p points to the root of
a tree.

4. Write a shorthand hashtbl(p) to denote that p points to an array of lists.

Problem 8.3 (extensions of the pointer logic). Consider a pointer logic
that only permits a conjunction of predicates of the following form, where p
is a pointer, and fi, gi are field identifiers:

∀p. p->f1->f2->f3 . . . = p->g1->g2->g3 . . .

Show that this logic is Turing complete.

Problem 8.4 (axiomatization of the memory model). Define a set of
memory model axioms for an architecture that uses 32-bit integers and little-
endian byte ordering.

Problem 8.5 (partitioning the memory). Suppose that a pointer logic
permits restrictions on L, the memory layout. Give a counterexample to The-
orem 8.14.

8.6.2 Reachability Predicates

Problem 8.6 (semantics of reachability predicates). Determine the sat-
isfiability of the following reachability predicate formulas:

1. p
f
→
p

q ∧ p �= q .

2. p
f
→
x

q ∧ p
f
→
q

x .

3. p
f
→
q

q ∧ q
f
→
p

p .

4. ¬(p
f
→
q

q) ∧ ¬(q
f
→
p

p) .

Problem 8.7 (modeling). Try to write reachability predicate formulas for
the following scenarios:

1. p points to a cyclic list where the next field is nxt .
2. p points to a NULL-terminated, doubly linked list.
3. p points to the root of a binary tree. The names of the fields for the left

and right subtrees are l and r, respectively.
4. p points to the root of a binary tree as above, and the leaves are connected

to a cyclic list.
5. p and q point to NULL-terminated singly linked lists that do not share

cells.
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Problem 8.8 (decision procedures). Build a decision procedure for a con-

junction of atoms that have the form p
f
→
q

q (or its negation).

Problem 8.9 (program verification). Write a code fragment that removes
an element from a singly linked list, and provide the verification conditions
using reachability predicate formulas.

8.7 Bibliographic Notes

The view of pointers as indices into a global array is commonplace, and simi-
larly so is the identification of structure components with arrays. Leino’s thesis
is an instance of recent work applying this approach [117], and resembles our
Sect. 8.3. An alternative point of view was proposed by Burstall: each com-
ponent introduces an array, where the array indices are the addresses of the
structures [42].

Transitive closure is frequently used to model recursive data structures.
Immerman et al. explored the impact of adding transitive closure to a given
logic. They showed that already very weak logics became undecidable as soon
as transitive closure was added [101].

The PALE (Pointer Assertion Logic Engine) toolkit, implemented by An-
ders Møller, uses a graph representation for various dynamically allocated
data structures. The graphs are translated into monadic second-order logic
and passed to MONA, a decision procedure for this logic [129]. Michael Ra-
bin proved in 1969 that the monadic second-order theory of trees was decid-
able [161].

The reachability predicate discussed in Sect. 8.5 was introduced by Greg
Nelson [135]. This 1983 paper stated that the question of whether the set
of (eight) axioms provided was complete remained open. A technical report
gives a decision procedure for a conjunction of reachability predicates, which
implies the existence of a complete axiomatization [138]. The procedure has
linear time complexity.

Numerous modern logics are based on this idea. For example, Lahiri and
Qadeer proposed two logics based on the idea of reachability predicates,
and offered effective decision procedures [113, 114]. The decision procedure
for [114] was based on a recent SMT solver.

Alain Deutsch [66] introduced an alias analysis algorithm that uses sym-
bolic access paths, i.e., expressions that symbolically describe what field to
follow for a given number of times. Symbolic access paths are therefore a gen-
eralization of the technique we described in Sect. 8.5. Symbolic access paths
are very expressive when combined with an expressive logic for the basis of
the access path, but this combination often results in undecidability.

Benedikt et al. [17] defined a logic for linked data structures. This logic uses
constraints on paths (called routing expressions) in order to define memory
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regions, and permits one to reason about sharing and reachability within such
regions. These authors showed the logic to be decidable using a small-model
property argument, but did not provide an efficient decision procedure.

A major technique for analyzing dynamically allocated data structures is
parametric shape analysis, introduced by Sagiv, Reps, and Wilhelm [163, 173,
198]. An important concept in the shape analysis of Sagiv et al. is the use of
Kleene’s three-valued logic for distinguishing predicates that are true, false,
or unknown in a particular abstract state. The resulting concretizations are
more precise than an abstraction using traditional, two-valued logic.

Separation Logic (see the aside on this subject) was introduced by John
Reynolds as an intuitionistic way of reasoning about dynamically allocated
data structures [165]. Calcagno et al. [44] showed that deciding the validity
of a formula in separation logic, even if robbed of its characteristic separating
conjunction, was not recursively enumerable. On the other hand, they showed
that once quantifiers were prohibited, validity became decidable. Decidable
fragments of separation logic have been studied, for example by Berdine et
al. [18, 19, 20]; these are typically restricted to predicates over lists. Parkinson
and Bierman address the problem of modular reasoning about programs using
separation logic [146].

Kuncak and Rinard introduced regular graph constraints as a representa-
tion of heaps. They showed that satisfiability of such heap summary graphs
was decidable, whereas entailment was not [110].

Alias analysis techniques have also been integrated directly into verifica-
tion algorithms. Manevich et al. described predicate abstraction techniques
for singly linked lists [121]. Beyer et al. described how to combine a pred-
icate abstraction tool that implements lazy abstraction with shape analy-
sis [21]. Podelski and Wies propose Boolean heaps as an abstract model for
heap-manipulating programs [157]. Here, the abstract domain is spanned by
a vector of arbitrary first-order predicates characterizing the heap. Bingham
and Rakamarić [24] also proposed to extend predicate abstraction with predi-
cates designated to describe the heap. Distefano et al. [67] defined an abstract
domain that is based on predicates drawn from separation logic. Berdine et
al. use separation logic predicates in an add-on to Microsoft’s SLAM device
driver verifier, called Terminator, in order to prove that loops iterating over
dynamically allocated data structures terminated.

Most frameworks for reasoning about dynamically allocated memory treat
the heap as composed of disjoint memory fragments, and do not model ac-
cesses beyond these fragments using pointer arithmetic. Calcagno et al. in-
troduced a variant of separation logic that permits reasoning about low-level
programs including pointer arithmetic [43]. This logic permits the analysis of
infrastructure usually assumed to exist at higher abstraction layers, e.g., the
code that implements the malloc function.
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8.8 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

A Set of addresses 182

D Set of data-words 182

M Map from addresses to data-words 182

L Memory layout 182

σ(v) The size of v 182

V Set of variables 182

�·� Semantics of pointer expressions 187

p →֒ z p points to a variable with value z 187

p->f Shorthand for (∗p).f 189

list(p, l) p points to a list of length l 190
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Quantified Formulas

9.1 Introduction

Quantification allows us to specify the extent of validity of a predicate, or
in other words the domain (range of values) in which the predicate should
hold. The syntactic element used in the logic for specifying quantification is
called a quantifier. The most commonly used quantifiers are the universal
quantifier , denoted by “∀”, and the existential quantifier , denoted by “∃”.

�

�

�

�
∀

�

�

�

�
∃

These two quantifiers are interchangeable using the following equivalence:

∀x. ϕ ⇐⇒ ¬∃x. ¬ϕ . (9.1)

Some examples of quantified statements are:

• For any integer x, there is an integer y smaller than x:

∀x ∈ Z. ∃y ∈ Z. y < x . (9.2)

• There exists an integer y such that for any integer x, x is greater than y:

∃y ∈ Z. ∀x ∈ Z. x > y . (9.3)

• (Bertrand’s Postulate) For any natural number greater than 1, there is a
prime number p such that n < p < 2n:

∀n ∈ N. ∃p ∈ N. n > 1 =⇒ (isprime(p) ∧ n < p < 2n) . (9.4)

In these three examples, there is quantifier alternation between the
universal and existential quantifiers. In fact, the satisfiability and validity
problems that we considered in earlier chapters can be cast as decision prob-
lems for formulas with nonalternating quantifiers. When we ask whether the
propositional formula

x ∨ y (9.5)
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is satisfiable, we can equivalently ask whether there exists a truth assignment
to x, y that satisfies this formula.1 And when we ask whether

x > y ∨ x < y (9.6)

is valid for x, y ∈ N, we can equivalently ask whether this formula holds for
all naturals x and y. The formulations of these two decision problems, are,
respectively,

∃x ∈ B. y ∈ B. (x ∨ y) (9.7)

and
∀x ∈ N. ∀y ∈ N. x > y ∨ x < y . (9.8)

We omit the domain of each quantified variable from now on when it is not
essential for the discussion.

An important characteristic of quantifiers is the scope in which they are
applied, called the binding scope. For example, in the following formula, the
existential quantification over x overrides the external universal quantification
over x:

∀x. ((x < 0) ∧ ∃y.

scope of ∃y︷ ︸︸ ︷
(y > x ∧ (y ≥ 0 ∨ ∃x. (y = x + 1)︸ ︷︷ ︸

scope of ∃x

)))

︸ ︷︷ ︸
scope of ∀x

. (9.9)

Within the scope of the second existential quantifier, all occurrences of x refer
to the variable bound by the existential quantifier. It is impossible to refer
directly to the variable bound by the universal quantifier. A possible solution
is to rename x in the inner scope: clearly, this does not change the validity of
the formula. After this renaming, we can assume that every occurrence of a
variable is bound exactly once.

Definition 9.1 (free variable). A variable is called free in a given formula
if at least one of its occurrences is not bound by any quantifier.

Definition 9.2 (sentence). A formula Q is called a sentence (or closed) if
none of its variables is free.

In this chapter we only focus on sentences.
Arbitrary first-order theories with quantifiers are undecidable. We restrict

the discussion in this chapter to decidable theories only, and begin with two
examples.

1 As explained in Sect. 1.4.1, the difference between the two formulations, namely
with no quantifiers and with nonalternating quantifiers, is that in the former all
variables are free (unquantified), and hence a satisfying structure (a model) for
such formulas includes an assignment to these variables. Since such assignments
are necessary in many applications, this book uses the former formulation.
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9.1.1 Example: Quantified Boolean Formulas

Quantified propositional logic is propositional logic enhanced with quan-
tifiers. Sentences in quantified propositional logic are better known as quan-
tified Boolean formulas (QBFs). The set of sentences permitted by the
logic is defined by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) |

identifier | ∃ identifier . formula

Other symbols such as “∨”, “∀” and “⇐⇒” can be constructed using elements
of the formal grammar. Examples of quantified Boolean formulas are

• ∀x. (x ∨ ∃y. (y ∨ ¬x)) ,
• ∀x. (∃y. ((x ∨ ¬y) ∧ (¬x ∨ y)) ∧ ∃y. ((¬y ∨ ¬x) ∧ (x ∨ y))) .

Complexity

The validity problem of QBF is PSPACE-complete, which means that it is
theoretically harder to solve than SAT, which is “only” NP-complete2. Both of
these problems (SAT and and the QBF problem) are frequently presented as
the quintessential problems of their respective complexity classes. The known
algorithms for both problems are exponential.

Usage example: chess

The following is an example of the use of QBF.

Example 9.3. QBF is a convenient way of modeling many finite two-player
games. As an example, consider the problem of determining whether there
is a winning strategy for a chess player in k steps, i.e., given a state of a
board and assuming white goes first, can white take the black king in k steps,
regardless of black’s moves? This problem can be modeled as QBF rather
naturally, because what we ask is whether there exists a move of white such
that for all possible moves of black that follow there exists a move of white
such that for all possible moves of black... and so forth, k times, such that
the goal of eliminating the black king is achieved. The number of steps k has
to be an odd natural, as white plays both the first and last move.

2 The difference between these two classes is that problems in NP are known to
have nondeterministic algorithms that solve them in polynomial time. It has not
been proven that these two classes are indeed different, but it is widely suspected
that this is the case.
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This is a classical problem in planning, a popular field of study in artificial
intelligence. To formulate the chess problem in QBF3, we use the notation in
Fig. 9.1. Every piece of each player has a unique index. Each location on the
board has a unique index as well, and the location 0 of a piece indicates that
it is outside the board. The size of the board is s (normally s = 8), and hence
there are s2 + 1 locations and 4s pieces.

Symbol Meaning

x{m,n,i} Piece m is at location n in step i, for 1 ≤ m ≤ 4s, 0 ≤ n ≤ s2, and
0 ≤ i ≤ k.

I0 A set of clauses over the x{m,n,0} variables that represent the initial
state of the board.

T w
i A set of clauses over the x{m,n,i}, x{m,n,i+1} variables that represent

the valid moves by white at step i.

T b
i A set of clauses over the x{m,n,i}, x{m,n,i+1} variables that represent

the valid moves by black at step i.

Gk A set of clauses over the x{m,n,k} variables that represent the goal,
i.e., in step k the black king is off the board and the white king is
on the board.

Fig. 9.1. Notation used in Example 9.3

We use the following convention: we write {xm,n,i} to represent the set of
variables {x{m,n,i} | m,n, i in their respective ranges}. Let us begin with the
following attempt to formulate the problem:

∃{x{m,n,0}}∃{x{m,n,1}}∀{x{m,n,2}}∃{x{m,n,3}} · · · ∀{x{m,n,k−1}}∃{x{m,n,k}}.

I0 ∧ (Tw
0 ∧ Tw

2 ∧ · · · ∧ Tw
k−1) ∧ (T b

1 ∧ T b
3 ∧ · · · ∧ T b

k−2) ∧Gk .

(9.10)
This formulation includes the necessary restrictions on the initial and goal

states, as well as on the allowed transitions. The problem is that this formula
is not valid for any initial configuration, because black can make an illegal
move – such as moving two pieces at once – which falsifies the formula (it
contradicts the subformula Ti for some odd i).

The formula needs to be weakened, as it is sufficient to find a white move
for the legal moves of black:

3 Classical formulations of planning problems distinguish between actions (moves
in this case) and states. Here we chose to present a formulation based on states
only.
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∃{x{m,n,0}}∃{x{m,n,1}}∀{x{m,n,2}}∃{x{m,n,3}} · · · ∀{x{m,n,k−1}}∃{x{m,n,k}}.

I0 ∧ ((T b
1 ∧ T b

3 ∧ · · · ∧ T b
k−2) =⇒ (Tw

0 ∧ Tw
2 ∧ · · · ∧ Tw

k−1 ∧Gk)) .

(9.11)
Is this formula a faithful representation of the chess problem? Unfortunately
not, because of the possibility of a stalemate: there could be a situation in
which black is not able to make a valid move, which results in a remis. A
possible solution for this problem is to ban white from making moves that
result in such a state by modifying Tw appropriately.

9.1.2 Example: Quantified Disjunctive Linear Arithmetic

The syntax of quantified disjunctive linear arithmetic (QDLA) is defined
by the following grammar:

formula : formula ∧ formula | ¬formula | (formula) |

predicate | ∀ identifier . formula

predicate : Σiaixi ≤ c

where c and ai are constants, for all i. The domain of the variables (identifiers)
is the reals. As before, other symbols such as “∨”, “∃” and “=” can be defined
using the formal grammar.

Aside: Presburger Arithmetic
Presburger arithmetic has the same grammar as quantified disjunctive linear
arithmetic, but is defined over the natural numbers rather than over the reals.
Presburger arithmetic is decidable and, as proven by Fischer and Rabin [75],
there is a lower bound of 22c·n

on the worst-case run-time complexity of a deci-
sion procedure for this theory, where n is the length of the input formula and c
is a positive constant. This theory is named after Mojzesz Presburger, who in-
troduced it in 1929 and proved its decidability. Replacing the Fourier–Motzkin
procedure with the Omega test (see Sect. 5.5) in the procedure described in
this section gives a decision procedure for this theory. Other decision proce-
dures for Presburger arithmetic are mentioned in the bibliographic notes at
the end of this chapter.

As an example, the following is a QDLA formula:

∀x. ∃y. ∃z. (y + 1 ≤ x ∨ z + 1 ≤ y ∧ 2x + 1 ≤ z) . (9.12)

9.2 Quantifier Elimination

9.2.1 Prenex Normal Form

We begin by defining a normal form for quantified formulas.
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Definition 9.4 (prenex normal form). A formula is said to be in prenex
normal form (PNF) if it is in the form

Q[n]V [n] · · ·Q[1]V [1]. 〈quantifier-free formula〉 , (9.13)

where for all i ∈ {1, . . . , n}, Q[i] ∈ {∀,∃} and V [i] is a variable.

We call the quantification string on the left of the formula the quantification
prefix, and call the quantifier-free formula to the right of the quantification
prefix the quantification suffix (also called the matrix ).

Lemma 9.5. For every quantified formula Q there exists a formula Q′ in
prenex normal form such that Q is valid if and only if Q′ is valid.

Algorithm 9.2.1 transforms an input formula into prenex normal form.

�

�

�

�

Algorithm 9.2.1: Prenex

Input: A quantified formula
Output: A formula in prenex normal form

1. Eliminate Boolean connectives other than ∨,∧,¬.
2. Push negations to the right across all quantifiers, using De Morgan’s rules

(see Sect. 1.3) and (9.1).
3. If there are name conflicts across scopes, solve by renaming: give each

variable in each scope a unique name.
4. Move quantifiers out by using equivalences such as

φ1 ∧ Qx. φ2(x) ⇐⇒ Qx. (φ1 ∧ φ2(x)) ,
φ1 ∨ Qx. φ2(x) ⇐⇒ Qx. (φ1 ∨ φ2(x)) ,
Q1y. φ1(y) ∧ Q2x. φ2(x) ⇐⇒ Q1y. Q2x. (φ1(y) ∧ φ2(x)) ,
Q1y. φ1(y) ∨ Q2x. φ2(x) ⇐⇒ Q1y. Q2x. (φ1(y) ∨ φ2(x)) ,

where Q, Q1, Q2 ∈ {∀, ∃} are quantifiers, x 
∈ vars(φ1), and y 
∈ vars(φ2).

Example 9.6. We demonstrate Algorithm 9.2.1 with the following formula:

Q := ¬∃x. ¬(∃y. ((y =⇒ x)∧(¬x∨y))∧¬∀y. ((y∧x)∨(¬x∧¬y))) . (9.14)

In steps 1 and 2, eliminate “ =⇒ ” and push negations inside:

∀x. (∃y. ((¬y ∨ x) ∧ (¬x ∨ y)) ∧ ∃y. ((¬y ∨ ¬x) ∧ (x ∨ y))) . (9.15)

In step 3, rename y as there are two quantifications over this variable:
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∀x. (∃y1. ((¬y1 ∨ x) ∧ (¬x ∨ y1)) ∧ ∃y2. ((¬y2 ∨ ¬x) ∧ (x ∨ y2))) . (9.16)

Finally, in step 4, move quantifiers to the left of the formula:

∀x. ∃y1. ∃y2. (¬y1 ∨ x) ∧ (¬x ∨ y1) ∧ (¬y2 ∨ ¬x) ∧ (x ∨ y2) . (9.17)

We assume from here on that the input formula is given in prenex normal
form.

9.2.2 Quantifier Elimination Algorithms

A quantifier elimination algorithm transforms a quantified formula into an
equivalent formula without quantifiers.4 The procedures that we present next
require that all the quantifiers are eliminated in order to check for validity.

It is sufficient to show that there exists a procedure for eliminating an
existential quantifier. Universal quantifiers can be eliminated by making use
of (9.1). For this purpose we define a general notion of projection, which has
to be concretized for each individual theory.

Definition 9.7 (projection). A projection of a variable x from a quantified
formula in prenex normal form with n quantifiers,

�

�

�

�
n

Q1 = Q[n]V [n] · · ·Q[2]V [2]. ∃x. φ , (9.18)

is a formula
Q2 = Q[n]V [n] · · ·Q[2]V [2]. φ′ (9.19)

(where both φ and φ′ are quantifier-free), such that x �∈ var(φ′), and Q1 and
Q2 are logically equivalent.

Given a projection algorithm Project, Algorithm 9.2.2 eliminates all quan-
tifiers. Assuming that we begin with a sentence (see Definition 9.2), the re-
maining formula is over constants and easily solvable.

4 Every sentence is equivalent to a formula without quantifiers, namely true or
false. But this does not mean that every theory has a quantifier elimination
algorithm. The existence of a quantifier elimination algorithm typically implies
the decidability of the logic.
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�

�

�

�

Algorithm 9.2.2: Quantifier Elimination

Input: A sentence Q[n]V [n] · · ·Q[1]V [1]. φ, where φ is quanti-
fier-free

Output: A (quantifier-free) formula over constants φ′, which is
valid if and only if φ is valid

1. φ′ := φ;
2. for i := 1, . . . , n do
3. if Q[i] = ∃ then
4. φ′ := Project( φ′, V [i]);
5. else
6. φ′ := ¬Project(¬φ′, V [i]);
7. Return φ′;

We now show two examples of projection procedures and their use in
quantifier elimination.

9.2.3 Quantifier Elimination for Quantified Boolean Formulas

Eliminating an existential quantifier over a conjunction of Boolean literals is
trivial: if x appears with both phases in the conjunction, then the formula is
unsatisfiable; otherwise, x can be removed. For example,

∃y. ∃x. x ∧ ¬x ∧ y = false ,
∃y. ∃x. x ∧ y = ∃y. y = true .

(9.20)

This observation can be used if we first convert the quantification suffix to
DNF and then apply projection to each term separately. This is justified by
the following equivalence:

∃x.
∨

i

∧

j

lij ⇐⇒
∨

i

∃x.
∧

j

lij , (9.21)

where lij are literals. But since converting formulas to DNF can result in
an exponential growth in the formula size (see Sect. 1.16), it is preferable
to have a projection that works directly on the CNF, or better yet, on a
general Boolean formula. We consider two techniques: binary resolution (see
Definition 2.11), which works directly on CNF formulas, and expansion.

Projection with Binary Resolution

Resolution gives us a method to eliminate a variable x from a pair of clauses in
which x appears with opposite phases. To eliminate x from a CNF formula by
projection (Definition 9.7), we need to apply resolution to all pairs of clauses
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where x appears with opposite phases. This eliminates x together with its
quantifier. For example, given the formula

∃y. ∃z. ∃x. (y ∨ x) ∧ (z ∨ ¬x) ∧ (y ∨ ¬z ∨ ¬x) ∧ (¬y ∨ z) , (9.22)

we can eliminate x together with ∃x by applying resolution on x to the first
and second clauses, and to the first and third clauses, resulting in:

∃y. ∃z. (y ∨ z) ∧ (y ∨ ¬z) ∧ (¬y ∨ z) . (9.23)

What about universal quantifiers? Relying on (9.1), in the case of CNF formu-
las, results in a surprisingly easy shortcut to eliminating universal quantifiers:
simply erase them from the formula. For example, eliminating x and ∀x from

∃y. ∃z. ∀x. (y ∨ x) ∧ (z ∨ ¬x) ∧ (y ∨ ¬z ∨ ¬x) ∧ (¬y ∨ z) (9.24)

results in
∃y. ∃z. (y) ∧ (z) ∧ (y ∨ ¬z) ∧ (¬y ∨ z) . (9.25)

This step is called forall reduction. It should be applied only after removing
tautology clauses (clauses in which a literal appears with both phases). We
leave the proof of correctness of this trick to Problem 9.3. Intuitively, however,
it is easy to see why this is correct: if the formula is evaluated to true for
all values of x, this means that we cannot satisfy a clause while relying on a
specific value of x.

Example 9.8. In this example, we show how to use resolution on both uni-
versal and existential quantifiers. Consider the following formula:

∀u1. ∀u2. ∃e1. ∀u3. ∃e3. ∃e2.
(u1 ∨ ¬e1) ∧ (¬u1 ∨ ¬e2 ∨ e3) ∧ (u2 ∨ ¬u3 ∨ ¬e1) ∧ (e1 ∨ e2) ∧ (e1 ∨ ¬e3) .

(9.26)
By resolving the second and fourth clauses on e2, we obtain

∀u1. ∀u2. ∃e1. ∀u3. ∃e3.
(u1 ∨ ¬e1) ∧ (¬u1 ∨ e1 ∨ e3) ∧ (u2 ∨ ¬u3 ∨ ¬e1) ∧ (e1 ∨ ¬e3) .

(9.27)

By resolving the second and fourth clauses on e3, we obtain

∀u1. ∀u2. ∃e1. ∀u3. (u1 ∨ ¬e1) ∧ (¬u1 ∨ e1) ∧ (u2 ∨ ¬u3 ∨ ¬e1) . (9.28)

By eliminating u3, we obtain

∀u1. ∀u2. ∃e1. (u1 ∨ ¬e1) ∧ (¬u1 ∨ e1) ∧ (u2 ∨ ¬e1) . (9.29)

By resolving the first and second clauses on e1, and the second and third
clauses on e1, we obtain

∀u1. ∀u2. (u1 ∨ ¬u1) ∧ (¬u1 ∨ u2) . (9.30)

The first clause is a tautology and hence is removed. Next, u1 and u2 are
removed, which leaves us with the empty clause. The formula, therefore, is
not valid.
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What is the complexity of this procedure? Consider the elimination of a
quantifier ∃x. In the worst case, half of the clauses contain x and half ¬x.
Since we create a new clause from each pair of the two types of clauses, this
results in O(m2) new clauses, while we erase the m old clauses that contain
x. Repeating this process n times results in O(m2n

) clauses.
This seems to imply that the complexity of projection with binary reso-

lution is doubly exponential. This, in fact, is only true if we do not prevent
duplicate clauses. Observe that there cannot be more than 3N distinct clauses,
where N is the total number of variables. The reason is that each variable can

�

�

�

�
N

appear positively, negatively, or not at all in a clause. This implies that if we
add each clause at most once, the number of clauses is only singly-exponential
in n (assuming N is not exponentially larger than n).

Expansion-Based Quantifier Elimination

The following quantifier elimination technique is based on expansion of quan-
tifiers, according to the following equivalences:

∃x. ϕ = ϕ|x=0 ∨ ϕ|x=1 , (9.31)

∀x. ϕ = ϕ|x=0 ∧ ϕ|x=1 . (9.32)

The notation ϕ|x=0 (the restrict operation; see p. 46) simply means that x is
replaced with 0 (false) in ϕ. Note that (9.32) can be derived from (9.31) by
using (9.1).

Projections using expansion result in formulas that grow to O(m · 2n)
clauses in the worst case, where, as before, m is the number of clauses in
the original formula. In contrast to binary resolution, there is no need to
refrain from using duplicate clauses in order to remain singly exponential in
n. Furthermore, this technique can be applied directly to non-CNF formulas,
in contrast to resolution, as the following example shows.

Example 9.9. Consider the following formula:

∃y. ∀z. ∃x. (y ∨ (x ∧ z)) . (9.33)

Applying (9.31) to ∃x results in

∃y. ∀z. (y ∨ (x ∧ z))|x=0 ∨ (y ∨ (x ∧ z))|x=1 , (9.34)

which simplifies to
∃y. ∀z. (y ∨ z) . (9.35)

Applying (9.32) yields

∃y. (y ∨ z)|z=0 ∧ (y ∨ z)|z=1 , (9.36)

which simplifies to
∃y. (y) , (9.37)

which is obviously valid. Hence, (9.33) is valid.
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9.2.4 Quantifier Elimination for Quantified Disjunctive Linear
Arithmetic

Once again we need a projection method. We use the Fourier–Motzkin elimina-
tion, which was described in Sect. 5.4. This technique resembles the resolution
method introduced in Sect. 9.2.3, and has a worst-case complexity of O(m2n

).
It can be applied directly to a conjunction of linear atoms and, consequently,
if the input formula has an arbitrary structure, it has to be converted first to
DNF.

Let us briefly recall the Fourier–Motzkin elimination method. In order to
eliminate a variable xn from a formula with variables x1, . . . , xn, for every two
conjoined constraints of the form

n−1∑

i=1

a′
i · xi < xn <

n−1∑

i=1

ai · xi , (9.38)

where for i ∈ {1, . . . , n − 1}, ai and a′
i are constants, we generate a new

constraint
n−1∑

i=1

a′
i · xi <

n−1∑

i=1

ai · xi . (9.39)

After generating all such constraints for xn, we remove all constraints that
involve xn from the formula.

Example 9.10. Consider the following formula:

∀x. ∃y. ∃z. (y + 1 ≤ x ∧ z + 1 ≤ y ∧ 2x + 1 ≤ z) . (9.40)

By eliminating z, we obtain

∀x. ∃y. (y + 1 ≤ x ∧ 2x + 1 ≤ y − 1) . (9.41)

By eliminating y, we obtain

∀x. (2x + 2 ≤ x− 1) . (9.42)

Using (9.1), we obtain

¬∃x. ¬(2x + 2 ≤ x− 1) , (9.43)

or, equivalently,
¬∃x. x > −3 , (9.44)

which is obviously not valid.
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9.3 Search-Based Algorithms for Quantified Boolean
Formulas

Most competitive QBF solvers are based on an adaptation of DPLL solvers.
The adaptation that we consider here is naive, in that it resembles the basic
DPLL algorithm without the more advanced features such as learning and
nonchronological backtracking (see Chap. 2 for details of DPLL solvers).

The key difference between SAT and the QBF problem is that the latter
requires handling of quantifier alternation. The binary search tree now has
to distinguish between universal nodes and existential nodes. Universal
nodes are labeled with a symbol “∀”, as can be seen in the right-hand drawing
in Fig. 9.2.

∀

Fig. 9.2. An existential node (left) and a universal node (right) in a QBF search-tree

A QBF binary search tree corresponding to a QBF Q, is defined as follows.

Definition 9.11 (QBF search tree corresponding to a quantified Bool-
ean formula). Given a QBF Q in prenex normal form and an ordering of its
variables (say, x1, . . . , xn), a QBF search tree corresponding to Q is a binary
labeled tree of height n + 1 with two types of internal nodes, universal and
existential, in which:

• The root node is labeled with Q and associated with depth 0.
• One of the children of each node at level i, 0 ≤ i < n, is marked with xi+1,

and the other with ¬xi+1.
• A node in level i, 0 ≤ i < n, is universal if the variable in level i + 1 is

universally quantified.
• A node in level i, 0 ≤ i < n, is existential if the variable in level i + 1 is

existentially quantified.

The validity of a QBF tree is defined recursively, as follows.

Definition 9.12 (validity of a QBF tree). A QBF tree is valid if its root
is satisfied. This is determined recursively according to the following rules:

• A leaf in a QBF binary tree corresponding to a QBF Q is satisfied if the
assignment corresponding to the path to this leaf satisfies the quantification
suffix of Q.

• A universal node is satisfied if both of its children are satisfied.
• An existential node is satisfied if at least one of its children is satisfied.



9.3 Search-Based Algorithms for QBF 219

Example 9.13. Consider the formula

Q := ∃e. ∀u. (e ∨ u) ∧ (¬e ∨ ¬u) . (9.45)

The corresponding QBF tree appears in Fig. 9.3.

¬e

¬u

∀

u¬uu

∀

Q

e

Fig. 9.3. A QBF search tree for the formula Q of (9.45)

The second and third u nodes are the only nodes that are satisfied (since
(e,¬u) and (¬e, u) are the only assignments that satisfy the suffix). Their
parent nodes, e and ¬e, are not satisfied, because they are universal nodes
and only one of their child nodes is satisfied. In particular, the root node,
representing Q, is not satisfied and hence Q is not valid.

A naive implementation based on these ideas is described in Algorithm 9.3.1.
More sophisticated algorithms exist [208, 209], in which techniques such as
nonchronological backtracking and learning are applied: as in SAT, in the
QBF problem we are also not interested in searching the whole search space
defined by the above graph, but rather in pruning it as much as possible.

The notation φ|v̂ in line 6 refers to the simplification of φ resulting from the
�

�

�

�

φ|v̂
assignments in the assignment set v̂.5 For example, let v̂ := {x �→ 0, y �→ 1}.
Then

(x ∨ (y ∧ z))|v̂ = (z) . (9.46)

Example 9.14. Consider (9.45) once again:

Q := ∃e. ∀u. (e ∨ u) ∧ (¬e ∨ ¬u) .

The progress of Algorithm 9.3.1 when applied to this formula, with the vari-
able ordering u, e, is shown in Fig. 9.4.

5 This notation represents an extension of the restrict operation that was intro-
duced on p. 46, from an assignment of a single variable to an assignment of a set
of variables.
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�

�

�

�

Algorithm 9.3.1: Search-based decision of QBF

Input: A QBF Q in PNF Q[n]V [n] · · · Q[1]V [1]. φ, where φ is in
CNF

Output: “Valid” if Q is valid, and “Not valid” otherwise

1. function main(QBF formula Q)
2. if QBF(Q, ∅, n) then return “Valid”;
3. else return “Not valid”;
4.
5. function Boolean QBF(Q, assignment set v̂, int level)
6. if (φ|v̂ simplifies to false) then return false;
7. if (level = 0) then return true;
8. if (Q[level] = ∀) then

9. return

(
QBF (Q, v̂ ∪ ¬V [level], level − 1) ∧
QBF (Q, v̂ ∪ V [level], level − 1)

)
;

10. else

11. return

(
QBF (Q, v̂ ∪ ¬V [level], level − 1) ∨
QBF (Q, v̂ ∪ V [level], level − 1)

)
;

9.4 Problems

9.4.1 Warm-up Exercises

Problem 9.1 (example of forall reduction). Show that the equivalence

∃e.∃f.∀u.(e ∨ f ∨ u) ≡ ∃e.∃f.(e ∨ f) (9.47)

holds.

Problem 9.2 (expansion-based quantifier elimination). Is the following
formula valid? Check by eliminating all quantifiers with expansion. Perform
simplifications when possible.

Q := ∀x1. ∀x2. ∀x3. ∃x4.
(x1 =⇒ (x2 =⇒ x3)) =⇒ ((x1 ∧ x2 =⇒ x3) ∧ (x4 ∨ x1)) .

(9.48)

9.4.2 QBF

Problem 9.3 (eliminating universal quantifiers from CNF). Let

Q := Q[n]V [n] · · ·Q[2]V [2]. ∀x. φ , (9.49)

where φ is a CNF formula. Let
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Recursion level Line Comment

0 2 QBF (Q, ∅, 2) is called.
0 6,7 The conditions in these lines do not hold.
0 8 Q[2] = ∃ .
0 11 QBF (Q, {e = 0}, 1) is called first.
1 6 φ|e=0 = (u) .
1 8 Q[1] = ∀ .
1 9 QBF (Q, {e = 0, u = 0}, 0) is called first.
2 6 φ|e=0,u=0 = false. return false.
1 9 return false.
0 11 QBF (Q, {e = 1}, 1) is called second.
1 6 φ|e=1 = (¬u) .
1 8 Q[1] = ∀ .
1 9 QBF (Q, {e = 1, u = 0}, 0) is called first.
2 6 φ|e=1,u=0 = true.
2 7 return true.
1 9 QBF (Q, {e = 1, u = 1}, 0) is called second.
2 6 φ|e=1,u=1 = false; return false.
1 9 return false.
0 11 return false.
0 3 return “Not valid”.

Fig. 9.4. A trace of Algorithm 9.3.1 when applied to (9.45)

Q′ := Q[n]V [n] · · ·Q[2]V [2]. φ′ , (9.50)

where φ′ is the same as φ except that x and ¬x are erased from all clauses.

1. Prove that Q and Q′ are logically equivalent if φ does not contain tautol-
ogy clauses.

2. Show an example where Q and Q′ are not logically equivalent if φ contains
tautology clauses.

Problem 9.4 (modeling: the diameter problem). QBFs can be used for
finding the longest shortest path of any state from an initial state in a finite
state machine. More formally, what we would like to find is defined as follows:

Definition 9.15 (initialized diameter of a finite state machine). The
initialized diameter of a state machine is the smallest k ∈ N for which every
node reachable in k + 1 steps can also be reached in k steps or fewer.

Our assumption is that the finite state machine is too large to represent
or explore explicitly: instead, it is given to us implicitly in the form of a
transition system, in a similar fashion to the chess problem that was described
in Sect. 9.1.1.

For the purpose of this problem, a finite transition system is a tuple
〈S, I, T 〉, where S is a finite set of states, each of which is a valuation of
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a finite set of variables (V ∪ V ′ ∪ In). V is the set of state variables and V ′ is
the corresponding set of next-state variables. In is the set of input variables. I
is a predicate over V defining the initial states, and T is a transition function
that maps each variable v ∈ V ′ to a predicate over V ∪ I.

An example of a class of state machines that are typically represented in
this manner is digital circuits. The initialized diameter of a circuit is important
in the context of formal verification: it represents the largest depth to which
one needs to search for an error state.

Given a transition system M and a natural k, formulate with QBF the
problem of whether k is the diameter of the graph represented by M . Intro-
duce proper notation in the style of the chess problem that was described in
Sect. 9.1.1.

Problem 9.5 (search-based QBFs). Apply Algorithm 9.3.1 to the formula

Q := ∀u. ∃e. (e ∨ u)(¬e ∨ ¬u) . (9.51)

Show a trace of the algorithm as in Fig. 9.4.

Problem 9.6 (QBFs and resolution). Using resolution, check whether the
formula

Q := ∀u. ∃e. (e ∨ u)(¬e ∨ ¬u) (9.52)

is valid.

Problem 9.7 (projection by resolution). Show that the pairwise resolu-
tion suggested in Sect. 9.2.3 results in a projection as defined in Definition 9.7.

Problem 9.8 (QBF refutations). Let

Q = Q[n]V [n]. · · ·Q[1]V [1]. φ , (9.53)

where φ is in CNF and Q is false, i.e., Q is not valid. Propose a proof format
for such QBFs that is generally applicable, i.e., allows us to give a proof for
any QBF that is not valid (similarly to the way that binary-resolution proofs
provide a proof format for propositional logic).

Problem 9.9 (QBF models). Let

Q = Q[n]V [n]. · · ·Q[1]V [1]. φ , (9.54)

where φ is in CNF and Q is true, i.e., Q is valid. In contrast to the quantifier-
free SAT problem, we cannot provide a satisfying assignment to all variables
that convinces us of the validity of Q.

(a) Propose a proof format for valid QBFs.
(b) Provide a proof for the formula in Problem 9.6 using your proof format.
(c) Provide a proof for the following formula:

∀u.∃e.(u ∨ ¬e)(¬u ∨ e) .
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9.5 Bibliographic Notes

Stockmeyer and his PhD advisor at MIT, Meyer, identified the QBF prob-
lem as PSPACE-complete as part of their work on the polynomial hierar-
chy [184, 185]. The idea of solving QBF by alternating between resolution
and eliminating universally quantified variables from CNF clauses was pro-
posed by Büning, Karpinski and Flögel [41]. The resolution part was termed
Q-resolution (recall that the original SAT-solving technique developed by
Davis and Putnam was based on resolution [57]).

There are many similarities in the research directions of SAT and QBF,
and in fact there are researchers who are active in both areas. The positive
impact that annual competitions and benchmark repositories have had on the
development of SAT solvers, has led to similar initiatives for the QBF problem
(e.g., see QBFLIB [85], which at the beginning of 2008 included more than
13 000 examples and a collection of more than 50 QBF solvers). Further,
similarly to the evidence provided by propositional SAT solvers (namely a
satisfying assignment or a resolution proof), many QBF solvers now provide
a certificate of the validity or invalidity of a QBF instance [103] (also see
Problems 9.8 and 9.9). Not surprisingly, there is a huge difference between
the size of problems that can be solved in a reasonable amount of time by
the best QBF solvers (thousands or a few tens of thousands of variables)
and the size of problems that can be solved by the best SAT solvers (several
hundreds of thousands or even a few millions of variables). It turns out that
the exact encoding of a given problem can have a very significant impact on
the ability to solve it – see, for example, the work by Sabharwal et al. [172].
The formulation of the chess problem in this chapter is inspired by that paper.

The research in the direction of applying propositional SAT techniques
to QBFs, such as adding conflict and blocking clauses and the search-based
method, is mainly due to work by Zhang and Malik [208, 209]. Quantifier
expansion is folk knowledge, and was used for efficient QBF solving by, for
example, Biere [22]. A similar type of expansion, called Shannon expansion,
was used for one-alternation QBFs in the context of symbolic model checking
with BDDs – see, for example, the work of McMillan [125]. Variants of BDDs
were used for QBF solving in [83].

Presburger arithmetic is due to Mojzesz Presburger, who published his
work, in German, in 1929 [159]. At that time, Hilbert considered Presburger’s
decidability result as a major step towards full mechanization of mathematics
(full mechanization of mathematics was the ultimate goal of many mathe-
maticians, such as Leibniz and Peano, much earlier than that), which later
on proved to be an impossibility, owing to Gödel’s incompleteness theorem.
Gödel’s result refers to Peano arithmetic, which is the same as Presburger
arithmetic with the addition of multiplication. One of the first mechanical
deduction systems was an implementation of Presburger’s algorithm on the
Johnniac, a vacuum tube computer, in 1954. At the time, it was considered
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a major step that the program was able to show that the sum of two even
numbers is an even number.

Two well-known approaches for solving Presburger formulas, in addition to
the one based on the Omega test that was mentioned in this chapter, are due
to Cooper [51] and the family of methods based on finite automata and model
checking: see the article by Wolper and Boigelot [203] and the publications
regarding the LASH system, as well as Ganesh, Berezin, and Dill’s survey
and empirical comparison [77] of such methods when applied to unquantified
Presburger formulas.

The problem of deciding quantified formulas over nonlinear real arithmetic
is decidable, although a description of a decision procedure for this problem
is not within the scope of this book. A well-known decision procedure for this
theory is cylindrical algebraic decomposition (CAD). A comparison of CAD
with other techniques can be found in [68]. Several tutorials on CAD can be
found on the Web.

9.6 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

∀,∃ The universal and existential quantification symbols 207

n The number of quantifiers 213

N The total number of variables (not only those exis-
tentially quantified)

216

φ|v̂ A simplification of φ based on the assignments in v̂.
This extends the restrict operator (p. 46)

219
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Deciding a Combination of Theories

10.1 Introduction

The decision procedures that we have studied so far focus on one specific
theory. Verification conditions that arise in practice, however, frequently mix
expressions from several theories. Consider the following examples:

• A combination of linear arithmetic and uninterpreted functions:

(x2 ≥ x1) ∧ (x1 − x3 ≥ x2) ∧ (x3 ≥ 0) ∧ f(f(x1)− f(x2)) �= f(x3) (10.1)

• A combination of bit-vectors and uninterpreted functions:

f(a[32], b[1]) = f(b[32], a[1]) ∧ a[32] = b[32] (10.2)

• A combination of arrays and linear arithmetic:

x = v{i←− e}[j] ∧ y = v[j] ∧ x > e ∧ x > y (10.3)

In this chapter, we cover the popular Nelson–Oppen combination method.
This method assumes that we have a decision procedure for each of the the-
ories involved. The Nelson–Oppen combination method permits the decision
procedures to communicate information with one another in a way that guar-
antees a sound and complete decision procedure for the combined theory.

10.2 Preliminaries

Let us recall several basic definitions and conventions that should be covered
in any basic course on mathematical logic (see also Sect. 1.4). We assume a
basic familiarity with first-order logic here.

First-order logic is a baseline for defining various restrictions thereof, which
are called theories. It includes



226 10 Deciding a Combination of Theories

• variables;
• logical symbols that are shared by all theories, such as the Boolean

operators (∧, ∨, . . .), quantifiers (∀, ∃) and parentheses;
• nonlogical symbols, namely function and predicate symbols, that are

uniquely specified for each theory; and
• syntax.

It is common to consider the equality sign as a logical symbol rather than
a predicate that is specific to a theory, since first-order theories without this
symbol are rarely considered. We follow this convention in this chapter.

A first-order theory is defined by a set of sentences (first-order formulas
in which all variables are quantified). It is common to represent such sets
by a set of axioms, with the implicit meaning that the theory is the set of
sentences that are derivable from these axioms. In such a case, we can talk
about the “axioms of the theory”. Axioms that define a theory are called the
nonlogical axioms, and they come in addition to the axioms that define the
logical symbols, which, correspondingly, are called the logical axioms.

A theory is defined over a signature Σ, which is a set of nonlogical symbols
�

�

�

�
Σ

(i.e., function and predicate symbols). If T is such a theory, we say it is a Σ-
theory. Let T be a Σ-theory. A Σ-formula ϕ is T -satisfiable if there exists an
interpretation that satisfies both ϕ and T . A Σ-formula ϕ is T -valid, denoted
T |= ϕ, if all interpretations that satisfy T also satisfy ϕ. In other words, such

�

�

�

�

T |= ϕ
a formula is T -valid if it can be derived from the T axioms and the logical
axioms.

Definition 10.1 (theory combination). Given two theories T1 and T2 with
signatures Σ1 and Σ2, respectively, the theory combination T1⊕T2 is a (Σ1∪

�

�

�

�
⊕

Σ2)-theory defined by the axiom set T1 ∪ T2.

The generalization of this definition to n theories rather than two theories is
straightforward.

Definition 10.2 (the theory combination problem). Let ϕ be a Σ1 ∪Σ2

formula. The theory combination problem is to decide whether ϕ is T1 ⊕ T2-
valid. Equivalently, the problem is to decide whether the following holds:

T1 ⊕ T2 |= ϕ . (10.4)

The theory combination problem is undecidable for arbitrary theories T1 and
T2, even if T1 and T2 themselves are decidable. Under certain restrictions on
the combined theories, however, the problem becomes decidable. We discuss
these restrictions later on.

An important notion required in this chapter is that of a convex theory.

Definition 10.3 (convex theory). A Σ-theory T is convex if for every con-
junctive Σ-formula ϕ
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(ϕ =⇒
∨n

i=1 xi = yi) is T -valid for some finite n > 1 =⇒
(ϕ =⇒ xi = yi) is T -valid for some i ∈ {1, . . . , n} ,

(10.5)

where xi, yi, for i ∈ {1, . . . , n}, are some variables.

In other words, in a convex theory T , if a formula T -implies a disjunction of
equalities, it also T -implies at least one of these equalities separately.

Example 10.4. Examples of convex and nonconvex theories include:

• Linear arithmetic over R is convex. A conjunction of linear arithmetic
predicates defines a set of values which can be empty, a singleton, as in

x ≤ 3 ∧ x ≥ 3 =⇒ x = 3 , (10.6)

or infinitely large, and hence it implies an infinite disjunction. In all three
cases, it fits the definition of convexity.

• Linear arithmetic over Z is not convex. For example, while

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ (x3 = x1 ∨ x3 = x2) (10.7)

holds, neither

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ x3 = x1 (10.8)

nor
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 =⇒ x3 = x2 (10.9)

holds.
• The conjunctive fragment of equality logic is convex. A conjunction of

equalities and disequalities defines sets of variables that are equal (equality
sets) and sets of variables that are different. Hence, it implies any equality
between variables in the same equality set separately. Convexity follows.

Many theories used in practice are in fact nonconvex, which, as we shall
soon see, makes them computationally harder to combine with other theories.

10.3 The Nelson–Oppen Combination Procedure

10.3.1 Combining Convex Theories

The Nelson–Oppen combination procedure solves the theory combination
problem (see Definition 10.2) for theories that comply with several restric-
tions.

Definition 10.5 (Nelson–Oppen restrictions). In order for the Nelson–
Oppen procedure to be applicable, the theories T1, . . . , Tn should comply with
the following restrictions:
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1. T1, . . . , Tn are quantifier-free first-order theories with equality.
2. There is a decision procedure for each of the theories T1, . . . , Tn.
3. The signatures are disjoint, i.e., for all 1 ≤ i < j ≤ n, Σi ∩Σj = ∅.
4. T1, . . . , Tn are theories that are interpreted over an infinite domain (e.g.,

linear arithmetic over R, but not the theory of finite-width bit vectors).

There are extensions to the basic Nelson–Oppen procedure that overcome each
of these restrictions, some of which are covered in the bibliographic notes at
the end of this chapter.

Algorithm 10.3.1 is the Nelson–Oppen procedure for combinations of con-
vex theories. It accepts a formula ϕ, which must be a conjunction of literals,
as input. In general, adding disjunction to a convex theory makes it noncon-
vex. Extensions of convex theories with disjunctions can be supported with
the extension to nonconvex theories that we present later on or, alternatively,
with the methods described in Chap. 11, which are based on combining a
decision procedure for the theory with a SAT solver.

The first step of Algorithm 10.3.1 relies on the idea of purification. Purifi-
cation is a satisfiability-preserving transformation of the formula, after which
each atom is from a specific theory. In this case, we say that all the atoms are
pure. More specifically, given a formula ϕ, purification generates an equisat-
isfiable formula ϕ′ as follows:

1. Let ϕ′ := ϕ.
2. For each “alien” subexpression φ in ϕ′,

(a) replace φ with a new auxiliary variable aφ, and
(b) constrain ϕ′ with aφ = φ.

Example 10.6. Given the formula

ϕ := x1 ≤ f(x1) , (10.10)

which mixes arithmetic and uninterpreted functions, purification results in

ϕ′ := x1 ≤ a ∧ a = f(x1) . (10.11)

In ϕ′, all atoms are pure: x1 ≤ a is an arithmetic formula, and a = f(x1)
belongs to the theory of equalities with uninterpreted functions.

After purification, we are left with a set of pure expressions F1, . . . , Fn

such that:
�

�

�

�
Fi

1. For all i, Fi belongs to theory Ti and is a conjunction of Ti-literals.
2. Shared variables are allowed, i.e., it is possible that for some i, j, 1 ≤ i <

j ≤ n, vars(Fi) ∩ vars(Fj) �= ∅.
3. The formula ϕ is satisfiable in the combined theory if and only if

∧n
i=1 Fi

is satisfiable in the combined theory.
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�

�

�

�

Algorithm 10.3.1: Nelson–Oppen-for-convex-theories

Input: A convex formula ϕ that mixes convex theories, with
restrictions as specified in Definition 10.5

Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” oth-
erwise

1. Purification: Purify ϕ into F1, . . . , Fn.
2. Apply the decision procedure for Ti to Fi. If there exists i such that

Fi is unsatisfiable in Ti, return “Unsatisfiable”.
3. Equality propagation: If there exist i, j such that Fi Ti-implies an

equality between variables of ϕ that is not Tj-implied by Fj , add
this equality to Fj and go to step 2.

4. Return “Satisfiable”.

Example 10.7. Consider the formula

(f(x1, 0) ≥ x3) ∧ (f(x2, 0) ≤ x3)∧
(x1 ≥ x2) ∧ (x2 ≥ x1)∧

(x3 − f(x1, 0) ≥ 1) ,
(10.12)

which mixes linear arithmetic and uninterpreted functions. Purification results
in

(a1 ≥ x3) ∧ (a2 ≤ x3) ∧ (x1 ≥ x2) ∧ (x2 ≥ x1) ∧ (x3 − a1 ≥ 1)∧
(a0 = 0)∧
(a1 = f(x1, a0))∧
(a2 = f(x2, a0)) .

(10.13)

In fact, we applied a small optimization here, assigning both instances of the
constant “0” to the same auxiliary variable a0. Similarly, both instances of
the term f(x1, 0) have been mapped to a1 (purification, as described earlier,
assigns them to separate auxiliary variables).

The top part of Table 10.1 shows the formula (10.13) divided into the two
pure formulas F1 and F2. The first is a linear arithmetic formula, whereas the
second is a formula in the theory of equalities with uninterpreted functions
(EUF). Neither F1 nor F2 is independently contradictory, and hence we pro-
ceed to step 3. With a decision procedure for linear arithmetic over the reals,
we infer x1 = x2 from F1, and propagate this fact to the other theory (i.e.,
we add this equality to F2). We can now deduce a1 = a2 in T2, and propagate
this equality to F1. From this equality, we conclude a1 = x3 in T1, which is a
contradiction to x3 − a1 ≥ 1 in T1.

Example 10.8. Consider the following formula, which mixes linear arith-
metic and uninterpreted functions:
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F1 (Arithmetic over R) F2 (EUF)

a1 ≥ x3 a1 = f(x1, a0)
a2 ≤ x3 a2 = f(x2, a0)
x1 ≥ x2

x2 ≥ x1

x3 − a1 ≥ 1
a0 = 0

⋆ x1 = x2 x1 = x2

a1 = a2 ⋆ a1 = a2

⋆ a1 = x3

⋆ false

Table 10.1. Progress of the Nelson–Oppen combination procedure starting from
the purified formula (10.13). The equalities beneath the middle horizontal line result
from step 3 of Algorithm 10.3.1. An equality is marked with a “⋆” if it was inferred
within the respective theory

(x2 ≥ x1)∧ (x1− x3 ≥ x2)∧ (x3 ≥ 0)∧ (f(f(x1)− f(x2)) �= f(x3)) . (10.14)

Purification results in

(x2 ≥ x1) ∧ (x1 − x3 ≥ x2) ∧ (x3 ≥ 0) ∧ (f(a1) �= f(x3))∧
(a1 = a2 − a3)∧
(a2 = f(x1))∧
(a3 = f(x2)) .

(10.15)

The progress of the equality propagation step, until the detection of a contra-
diction, is shown in Table 10.2.

10.3.2 Combining Nonconvex Theories

Next, we consider the combination of nonconvex theories (or of convex theo-
ries together with theories that are nonconvex). First, consider the following
example, which illustrates that Algorithm 10.3.1 may fail if one of the theories
is not convex:

(1 ≤ x) ∧ (x ≤ 2) ∧ p(x) ∧ ¬p(1) ∧ ¬p(2) , (10.16)

where x ∈ Z.
Equation (10.16) mixes linear arithmetic over the integers and equalities

with uninterpreted predicates. Linear arithmetic over the integers, as demon-
strated in Example 10.4, is not convex. Purification results in

1 ≤ x ∧ x ≤ 2 ∧ p(x) ∧ ¬p(a1) ∧ ¬p(a2)∧
a1 = 1∧
a2 = 2

(10.17)
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F1 (arithmetic over R) F2 (EUF)

x2 ≥ x1 f(a1) 
= f(x3)
x1 − x3 ≥ x2 a2 = f(x1)
x3 ≥ 0 a3 = f(x2)
a1 = a2 − a3

⋆ x3 = 0
⋆ x1 = x2 x1 = x2

a2 = a3 ⋆ a2 = a3

⋆ a1 = 0
⋆ a1 = x3 a1 = x3

false

Table 10.2. Progress of the Nelson–Oppen combination procedure starting from
the purified formula (10.15)

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

Table 10.3. The two pure formulas corresponding to (10.16) are independently
satisfiable and do not imply any equalities. Hence, Algorithm 10.3.1 returns “Satis-
fiable”

Table 10.3 shows the partitioning of the predicates in the formula (10.17) into
the two pure formulas F1 and F2. Note that both F1 and F2 are individually
satisfiable, and neither implies any equalities in its respective theory. Hence,
Algorithm 10.3.1 returns “Satisfiable” even though the original formula is
unsatisfiable in the combined theory.

The remedy to this problem is to consider not only implied equalities, but
also implied disjunctions of equalities. Recall that there is a finite number of
variables, and hence of equalities and disjunctions of equalities, which means
that computing these implications is feasible. Given such a disjunction, the
problem is split into as many parts as there are disjuncts, and the procedure is
called recursively. For example, in the case of the formula (10.16), F1 implies
x = 1∨ x = 2. We can therefore split the problem into two, considering sepa-
rately the case in which x = 1 and the case in which x = 2. Algorithm 10.3.2
merely adds one step (step 4) to Algorithm 10.3.1: the step that performs this
split.
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�

�

�

�

Algorithm 10.3.2: Nelson–Oppen

Input: A formula ϕ that mixes theories, with restrictions as specified
in Definition 10.5

Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” otherwise

1. Purification: Purify ϕ into ϕ′ := F1, . . . , Fn.
2. Apply the decision procedure for Ti to Fi. If there exists i such that Fi is

unsatisfiable, return “Unsatisfiable”.
3. Equality propagation: If there exist i, j such that Fi Ti-implies an equality

between variables of ϕ that is not Tj-implied by Fj , add this equality to
Fj and go to step 2.

4. Splitting: If there exists i such that

• Fi =⇒ (x1 = y1 ∨ · · · ∨ xk = yk) and
• ∀j ∈ {1, . . . , k}. Fi 
=⇒ xj = yj ,

then apply Nelson–Oppen recursively to

ϕ′ ∧ x1 = y1, . . . , ϕ
′ ∧ xk = yk .

If any of these subproblems is satisfiable, return “Satisfiable”. Otherwise,
return “Unsatisfiable”.

5. Return “Satisfiable”.

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

⋆ x = 1 ∨ x = 2

Table 10.4. The disjunction of equalities x = a1 ∨ x = a2 is implied by F1. Al-
gorithm 10.3.2 splits the problem into the subproblems described in Tables 10.5
and 10.6, both of which return “Unsatisfiable”

Example 10.9. Consider the formula (10.16) again. Algorithm 10.3.2 infers
(x = 1 ∨ x = 2) from F1, and splits the problem into two subproblems, as
illustrated in Tables 10.4–10.6.
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F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

x = 1
⋆ x = a1 x = a1

false

Table 10.5. The case x = a1 after the splitting of the problem in Table 10.4

F1 (arithmetic over Z) F2 (EUF)

1 ≤ x p(x)
x ≤ 2 ¬p(a1)
a1 = 1 ¬p(a2)
a2 = 2

x = 2
⋆ x = a2 x = a2

false

Table 10.6. The case x = a2 after the splitting of the problem in Table 10.4

10.3.3 Proof of Correctness of the Nelson–Oppen Procedure

We now prove the correctness of Algorithm 10.3.1 for convex theories and for
conjunctions of theory literals. The generalization to Algorithm 10.3.2 is not
hard. Without proof, we rely on the fact that

∧
i Fi is equisatisfiable with ϕ.

Theorem 10.10. Algorithm 10.3.1 returns “Unsatisfiable” if and only if its
input formula ϕ is unsatisfiable in the combined theory.

Proof. Without loss of generality, we can restrict the proof to the combination
of two theories T1 and T2.

(⇒, Soundness) Assume that ϕ is satisfiable in the combined theory. We
are going to show that this contradicts the possibility that Algorithm 10.3.2
returns “Unsatisfiable”. Let α be a satisfying assignment of ϕ. Let A be the
set of auxiliary variables added as a result of the purification step (step 1).
As

∧
i Fi and ϕ are equisatisfiable in the combined theory, we can extend α

to an assignment α′ that includes also the variables A.

Lemma 10.11. Let ϕ be satisfiable. After each loop iteration,
∧

i Fi is satis-
fiable in the combined theory.
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Proof. The proof is by induction on the number of loop iterations. Denote by
F j

i the formula Fi after iteration j.

Base case. For j = 0, we have F j
i = Fi, and, thus, a satisfying assignment

can be constructed as described above.
Induction step. Assume that the claim holds up to iteration j. We shall

show the correctness of the claim for iteration j + 1. For any equality x = y
that is added in step 3, there exists an i such that F j

i =⇒ x = y in Ti. Since

α′ |= F j
i in Ti by the hypothesis, clearly, α′ |= x = y in Ti. Since for all i it

holds that α′ |= F j
i in Ti, then for all i it holds that α′ |= Fi ∧ x = y in Ti.

Hence, in step 2, the algorithm will not return “Unsatisfiable”.

(⇐, Completeness) First, observe that Algorithm 10.3.1 always terminates,
as there are only finitely many equalities over the variables in the formula. It
is left to show that the algorithm gives the answer “Unsatisfiable”. We now
record a few observations about Algorithm 10.3.1. The following observation
is simple to see.

Lemma 10.12. Let F ′
i denote the formula Fi upon termination of Algori-

�

�

�

�

F ′
i

thm 10.3.1. Upon termination with the answer “Satisfiable”, any equality be-
tween ϕ’s variables that is implied by any of the F ′

i is also implied by all F ′
j

for any j.

We need to show that if ϕ is unsatisfiable, Algorithm 10.3.1 returns “Unsat-
isfiable”. Assume falsely that it returns “Satisfiable”.

Let E1, . . . , Em be a set of equivalence classes of the variables in ϕ such
that x and y are in the same class if and only if F ′

1 implies x = y in T1. Owing
to Lemma 10.12, x, y ∈ Ei for some i if and only if x = y is T2-implied by F ′

2.
For i ∈ {1, . . . , m}, let ri be an element of Ei (a representative of that set).

We now define a constraint Δ that forces all variables that are not implied to
�

�

�

�
Δ

be equal to be different:

Δ
.
=
∧

i�=j

ri �= rj . (10.18)

Lemma 10.13. Given that both T1 and T2 have an infinite domain and are
convex, Δ is T1-consistent with F ′

1 and T2-consistent with F ′
2.

Informally, this lemma can be shown to be correct as follows. Let x and y
be two variables that are not implied to be equal. Owing to convexity, they
do not have to be equal to satisfy F ′

i . As the domain is infinite, there are
always values left in the domain that we can choose in order to make x and y
different.

Using Lemma 10.13, we argue that there are satisfying assignments α1 and
α2 for F ′

1 ∧Δ and F ′
2 ∧Δ in T1 and T2, respectively. These assignments are

maximally diverse, i.e., any two variables that are assigned equal values by
either α1 or α2 must be equal.
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Given this property, it is easy to build a mapping M (an isomorphism)
from domain elements to domain elements such that α2(x) is mapped to α1(x)
for any variable x (this is not necessarily possible unless the assignments are
maximally diverse).

As an example, let F1 be x = y and F2 be F (x) = G(y). The only equality
implied is x = y, by F1. This equality is propagated to T2 and, thus, both
F ′

1 and F ′
2 imply this equality. Possible variable assignments for F ′

1 ∧Δ and
F ′

2 ∧Δ are
α1 = {x �→ D1, y �→ D1} ,
α2 = {x �→ D2, y �→ D2} ,

(10.19)

where D1 and D2 are some elements from the domain. This results in an
isomorphism M such that M(D1) = D2.

Using the mapping M , we can obtain a model α′ for F ′
1∧F ′

2 in the combined
theory by adjusting the interpretation of the symbols in F ′

2 appropriately. This
is always possible, as T1 and T2 do not share any nonlogical symbols.

Continuing our example, we construct the following interpretation for the
nonlogical symbols F and G:

F (D1) = D3 , G(D1) = D3 . (10.20)

As F ′
i implies Fi in Ti, α′ is also a model for F1 ∧ F2 in the combined theory,

which contradicts our assumption that ϕ is unsatisfiable.

Note that without the restriction to infinite domains, Algorithm 10.3.1 may
fail. The original description of the algorithm lacked such a restriction. The
algorithm was later amended by adding the requirement that the theories are
stably infinite, which is a generalization of the requirement in our presentation.
The following example, given by Tinelli and Zarba in [194], demonstrates why
this restriction is important.

Example 10.14. Let T1 be a theory over signature Σ1 = {f}, where f is a
function symbol, and axioms that enforce solutions with no more than two
distinct values. Let T2 be a theory over signature Σ2 = {g}, where g is a
function symbol.

Recall that the combined theory T1⊕T2 contains the union of the axioms.
Hence, the solution to any formula ϕ ∈ T1 ⊕ T2 cannot have more than two
distinct values.

Now, consider the following formula:

f(x1) �= f(x2) ∧ g(x1) �= g(x3) ∧ g(x2) �= g(x3) . (10.21)

This formula is unsatisfiable in T1 ⊕ T2 because any assignment satisfying it
must use three different values for x1, x2, and x3.
However, this fact is not revealed by Algorithm 10.3.2, as illustrated in Ta-
ble 10.7.
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F1 (a Σ1-formula) F2 (a Σ2-formula)

f(x1) 
= f(x2) g(x1) 
= g(x3)
g(x2) 
= g(x3)

Table 10.7. No equalities are propagated by Algorithm 10.3.2 when checking the
formula (10.21). This results in an error: although F1 ∧ F2 is unsatisfiable, both F1

and F2 are satisfiable in their respective theories

An extension to the Nelson–Oppen combination procedure for nonstably
infinite theories was given in [194], although the details of the procedure are
beyond the scope of this book. The main idea is to compute, for each nonsta-
bly infinite theory Ti, a lower bound Ni on the size of the domain in which
satisfiable formulas in this theory must be satisfied (it is not always possible
to compute this bound). Then, the algorithm propagates this information be-
tween the theories along with the equalities. When it checks for consistency of
an individual theory, it does so under the restrictions on the domain defined
by the other theories. Fj is declared unsatisfiable if it does not have a solution
within the bound Ni for all i.

10.4 Problems

Problem 10.1 (using the Nelson–Oppen procedure). Prove that the
following formula is unsatisfiable using the Nelson–Oppen procedure, where
the variables are interpreted over the integers:

g(f(x1 − 2)) = x1 + 2 ∧ g(f(x2)) = x2 − 2 ∧ (x2 + 1 = x1 − 1) .

Problem 10.2 (an improvement to the Nelson–Oppen procedure).
A simple improvement to Algorithm 10.3.1 is to restrict the propagation of
equalities in step 3 as follows. We call a variable local if it appears only in a
single theory. Then, if an equality vi = vj is implied by Fi and not by Fj , we
propagate it to Fj only if vi, vj are not local to Fi. Prove the correctness of
this improvement.

Problem 10.3 (proof of correctness of Algorithm 10.3.2 for the
Nelson–Oppen procedure). Prove the correctness of Algorithm 10.3.2 by
generalizing the proof of Algorithm 10.3.1 given in Sect. 10.3.3.

10.5 Bibliographic Notes

The theory combination problem (Definition 10.2) was shown to be unde-
cidable in [27]. The depth of the topic of combining theories resulted in an



10.5 Bibliographic Notes 237

Aside: An Abstract Version of the Nelson–Oppen Procedure
Let V be the set of variables used in F1, . . . , Fn. A partition P of V induces
equivalence classes, in which variables are in the same class if and only if they
are in the same partition as defined by P . (Every assignment to V ’s variables
induces such a partition.) Denote by R the equivalence relation corresponding
to these classes. The arrangement corresponding to P is defined by

ar(P )
.
=

∧

vi R vj ,i<j

vi = vj ∧
∧

¬(viR vj),i<j

vi �= vj . (10.22)

In words, the arrangement ar(P ) is a conjunction of all equalities and dise-
qualities corresponding to P , modulo reflexivity and symmetry. For example,
if V := {x1, x2, x3} and P := {{x1, x2}, {x3}}, then

ar(P ) := x1 = x2 ∧ x1 �= x3 ∧ x2 �= x3 . (10.23)

Now, consider the following abstract version of the Nelson–Oppen proce-
dure:

1. Choose nondeterministically a partition P of V ’s variables.
2. If one of Fi ∧ ar(P ) with i ∈ {1, . . . , n} is unsatisfiable, return “Unsatis-

fiable”. Otherwise, return “Satisfiable”.

We have:

• Termination. The procedure terminates, since there is a finite number of
partitions.

• Soundness and completeness. If the procedure returns “Unsatisfiable”,
then the input formula is unsatisfiable. Indeed, if there is a satisfying
assignment to the combined theory, this assignment corresponds to some
arrangement; testing this arrangement leads to a termination with the re-
sult “Satisfiable”. The other direction is harder to prove, but also possible.
See [193] for more details.

The nondeterministic step can be replaced with a deterministic one, by try-
ing all such partitions possible. Hence, now it is clear that the requirement
in the Nelson–Oppen procedure for sharing implied equalities can be under-
stood as an optimization over an exhaustive search, rather than a necessity
for correctness.

More generally, abstract decision procedures such as the one presented
here are quite common in the literature. They are convenient for theoretical
reasons, and can even help in designing concrete procedures in a more modular
way. Abstracting some implementation details – typically by using nondeter-
minism – can be helpful for various reasons, such as clarity and generality,
simplicity of proving an upper bound on the complexity, and simplicity of the
correctness argument, as demonstrated above.
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unusual history of false claims, wrong algorithms, and, correspondingly, wrong
implementations in widely used tools.

The presentation of the algorithm in this chapter is based mainly on the
original paper by Nelson and Oppen [137]. However, the presentation in [137]
did not require that the theories were stably infinite. One year later, Oppen
realized this problem and added this restriction, without fixing the proof it-
self [145]. A full, model-theoretic proof was provided only in 1996 by Tinelli
and Harandi in [193], which also serves as a basis for the (simplified) proof in
Sect. 10.3.3.

Several publications since then have extended the basic algorithms in or-
der to combine theories with fewer restrictions. In Sect. 10.3.3, we mentioned
Tinelli and Zarba’s extension to the combination of nonstably infinite theo-
ries [194]. Nelson and Oppen’s combination procedure in its original form, as
described in this chapter, can be very inefficient. Several optimizations have
been suggested, including a method for avoiding the purification step [14].
There is empirical evidence showing that the computation of the implied
equalities can become a bottleneck when one is combining, for example, linear
arithmetic on the basis of the Simplex method [63].

Oppen’s nondeterministic combination method (see p. 237) implies a sim-
ple way to avoid equality propagation altogether. We delay a description of
this idea to the next chapter (see Sect. 11.5), because its implementation is
coupled with the techniques described in that chapter.

Shostak’s combination procedure [179] was considered to be the major al-
ternative to the Nelson–Oppen procedure for many years. The main difference
was that it maintained a single global congruence closure data structure for
all theories. The various decision procedures learned about equalities from
this data structure and updated it once they had discovered new equalities.
A major advantage of this method was that adding uninterpreted functions
was straightforward (see Chap. 4). However, Rueß and Shankar [168] realized
in 2001 that Shostak’s method was in fact flawed (it was incomplete and not
necessarily terminating). Any attempt to fix it turned out to be a special case
of the Nelson–Oppen procedure – see, for example, the description of this
matter by Barret, Dill, and Stump [14].

Krstić and Conchon showed in [108] that Shostak’s method was only a way
to extend decision procedures for certain theories (now called Shostak’s theo-
ries) with uninterpreted-function symbols, and could not be used to combine
theories. Consequently, it is not comparable with the Nelson–Oppen proce-
dure.

In practice, the main application of the Nelson–Oppen procedure is the
combination of equality logic with uninterpreted functions with other theories,
for example linear arithmetic. It is implemented in this way in most state-of-
the-art solvers. Note that the Nelson–Oppen procedure is not meant as a
reduction technique, that is, its purpose is not to decide, for example, bit-
vector arithmetic using the Simplex method.
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10.6 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

Σ The signature of a theory, i.e., its set of nonlogical
predicates and function symbols and their respective
arities (i.e., those symbols that are not common to
all first-order theories)

226

T |= ϕ ϕ is T -valid 226

T1 ⊕ T2 Denotes the theory obtained from combining the the-
ories T1 and T2, i.e., a theory over Σ1 ∪ Σ2 defined
by the set of axioms T1 ∪ T2

226

Fi The pure (theory-specific) formulas in Algo-
rithm 10.3.1

228

F ′
i The formula Fi upon termination of Algorithm 10.3.1 234

Δ A constraint that forces all variables that are not
implied to be equal to be different

234
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Propositional Encodings

11.1 Overview

In this chapter we use several terms that were defined in Sect. 1.4, and assume
the reader is familiar with the basic architecture of SAT solvers, as described
in Chap. 2.

Let T be a quantifier-free first-order theory over a signature Σ, such that
there exists a decision procedure, denoted DPT , for the conjunctive fragment
of T (i.e., DPT can decide a conjunction of Σ-literals). For example, T could
be equality logic with uninterpreted functions; a possible choice for DPT in
this case is the congruence closure algorithm (Algorithm 4.1.1), described in
Chap. 4. As another example, T could be disjunctive linear arithmetic and
DPT the simplex algorithm, described in Chap. 5.

In this chapter, we study a general method – a framework, really – that
combines DPT with a propositional SAT solver in various ways in order to
construct a decision procedure for T . This approach has strong practical ad-
vantages, as it is both very modular and very efficient. In fact, variants of
this method are considered nowadays to be the best available in terms of effi-
ciency, modularity, and generality.1 The two main engines in this framework
work in tight collaboration: the SAT solver chooses those literals that need to
be satisfied in order to satisfy the Boolean structure of the formula, and DPT

checks whether this choice is consistent in T .
Given a Σ-literal l, we associate with it a unique Boolean variable e(l),

�

�

�

�

e(l)
which we call the Boolean encoder of this literal. Extending this idea to
formulas, given a Σ-formula t, e(t) denotes the Boolean formula resulting

�

�

�

�

e(t)
from substituting each Σ-literal in t with its Boolean encoder.

For example, if x = y is a Σ-literal, then e(x = y), a Boolean variable, is
its encoder. And if

1 Currently (2008), this approach is considered almost as standard. All the tools
that participated in the SMT-COMP tool competitions in the years 2005–2007
(see Appendix A) belong to this category.



242 11 Propositional Encodings

t := x = y ∨ x = z (11.1)

is a Σ-formula, then

e(t) := e(x = y) ∨ e(x = z) . (11.2)

For a Σ-formula t, the resulting Boolean formula e(t) is called the proposi-
tional skeleton of t.

Using this notation, we can now begin to give an overview of the methods
studied in this chapter, while following a simple example. Some of the notation
that we shall use in this example will be defined more formally later on.

Let T be equality logic. Given an NNF formula

ϕ := x = y ∧ ((y = z ∧ x �= z) ∨ x = z) , (11.3)

we begin by computing its propositional skeleton:

e(ϕ) := e(x = y) ∧ (e(y = z) ∧ e(x �= z)) ∨ e(x = z) . (11.4)

Note that since we are encoding literals and not atoms, e(ϕ) has no negations
and hence is trivially satisfiable.2 Let B be a Boolean formula, initially set to
e(ϕ), i.e.,

B := e(ϕ) . (11.5)

As a second step, we pass B to a SAT solver. Assume that the SAT solver
returns the satisfying assignment

α := {e(x = y) �→ true, e(y = z) �→ true, e(x �= z) �→ true,
e(x = z) �→ false} .

The decision procedure DPT now has to decide whether the conjunction of
the literals corresponding to this assignment is satisfiable. We denote this
conjunction by T̂ h(α) (the “Th” is intended to remind the reader that the
result of this function is a Theory, and the “hat” that it is a conjunction of
symbols). For the assignment above,

T̂ h(α) := x = y ∧ y = z ∧ x �= z ∧ ¬(x = z) . (11.6)

This formula is not satisfiable, which means that the negation of this formula
is a tautology. Thus B is conjoined with e(¬T̂ h(α)), the Boolean encoding of
this tautology:

e(¬T̂ h(α)) := (¬e(x = y) ∨ ¬e(y = z) ∨ ¬e(x �= z) ∨ e(x = z)) . (11.7)

This clause contradicts the current assignment, and hence blocks it from being
repeated. Such clauses are called blocking clauses. In general, we denote by

2 Although encoding an atom and its negation with a single variable reduces the
number of encoding variables, we require here that they are encoded with two
different variables. This simplifies the presentation and the proofs later on.
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t the formula – also called the lemma – returned by DPT (in this example

t := ¬T̂ h(α)). The negation of the current assignment is not the most effective
lemma in terms of speeding up the search, as we shall see later on.

After the blocking clause has been added, the SAT solver is invoked again
and suggests another assignment, for example

α′ := {e(x = y) �→ true, e(y = z) �→ true, e(x = z) �→ true,
e(x �= z) �→ false} .

The corresponding Σ-formula

T̂ h(α′) := x = y ∧ y = z ∧ x = z ∧ ¬(x �= z) (11.8)

is satisfiable, which proves that ϕ, the original formula, is satisfiable. Indeed,
any assignment that satisfies T̂ h(α′) also satisfies ϕ.

α

te(t)

T̂ h(α)

for a conjunction of Σ-terms

DPT - A Decision procedurePropositional

SAT Solver

Fig. 11.1. The information exchanged between the SAT solver and a decision
procedure DPT for a conjunction of Σ-literals

Figure 11.1 illustrates the information flow between the two components
of the decision procedure.

There are many improvements to this basic procedure, some of which
we shall cover later in this chapter, and some of which are left as exercises
in Sect. 11.4. One such improvement, for example, is to invoke the decision
procedure DPT after some or all partial assignments, rather than waiting for
a full assignment. A contradicting partial assignment leads to a more powerful
lemma t, as it blocks all assignments that extend it. Further, when the partial
assignment is not contradictory, it can be used to derive implications that are
propagated back to the SAT solver. Continuing the example above, consider
the partial assignment

α := {e(x = y) �→ true, e(y = z) �→ true} , (11.9)

and the corresponding formula that is transferred to DPT ,

T̂ h(α) := x = y ∧ y = z . (11.10)

This leads DPT to conclude that x = z is implied, and hence accordingly to in-
form the SAT solver that e(x = z) �→ true and e(x �= z) �→ false are implied
by the current partial assignment α. Thus, in addition to the normal Boolean
constraint propagation (BCP), there is now also theory propagation. Such
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propagation may lead to further BCP, which means that this process may
iterate several times before the next decision is made by the SAT solver.

In the next few sections, we describe variations of the process demonstrated
above.

11.2 Lazy Encodings

11.2.1 Definitions and Notations

As in the other chapters of this book, we focus on the satisfiability problem
of NNF formulas.

Let lit(ϕ) denote the set of literals in a given NNF formula ϕ. Assuming
�

�

�

�

lit(ϕ)
�

�

�

�
ϕ

some predefined order on the literals, we denote the i-th distinct literal in ϕ
by lit i(ϕ).

�

�

�

�

lit i(ϕ) For a given encoding e(ϕ), we denote by α an assignment, either full or

�

�

�

�
α

partial, to the encoders in e(ϕ). Then for an encoder e(lit i) that is assigned a
truth value by α, we define the corresponding literal, denoted Th(lit i, α), as
follows:

Th(lit i, α)
.
=

{
lit i α(lit i) = true
¬lit i α(lit i) = false .

(11.11)

Somewhat overloading the notation, we write Th(α) to denote the set of lit-
�

�

�

�

Th(α)
erals such that their encoders are assigned by α:

Th(α)
.
= {Th(lit i, α) | e(liti) is assigned by α} . (11.12)

We denote by T̂ h(α) the conjunction over the elements in Th(α).

�

�

�

�

T̂ h(α)

Example 11.1. To demonstrate the use of the above notation, let

lit1 = (x = y), lit2 = (y = z), lit3 = (z = w) , (11.13)

and let α be a partial assignment such that

α := {e(lit1) �→ false, e(lit2) �→ true} . (11.14)

Then
Th(lit1, α) := ¬(x = y), Th(lit2, α) := (y = z) , (11.15)

and
Th(α) := {¬(x = y), (y = z)} . (11.16)

Conjoining these terms gives us

T̂ h(α) := ¬(x = y) ∧ (y = z) . (11.17)
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11.2.2 A Lazy Procedure for Building Propositional Encodings

Recall that DPT is a decision procedure for a conjunction of Σ-literals, where
T is a theory defined over the symbols in Σ. Let Deduction be a procedure
based on DPT , which receives a conjunction of Σ-literals as input, decides
whether it is satisfiable, and, if the answer is negative, returns constraints over
these literals, as explained below. On the basis of such a procedure, we now
examine variations of the method that is demonstrated in the introduction to
this chapter.

Algorithm 11.2.1 (Lazy-Basic) decides whether a given Σ-formula ϕ is
satisfiable. It does so by iteratively solving a propositional formula B, starting

�

�

�

�
B

from B = e(ϕ), and gradually strengthening it with encodings of constraints
that are computed by Deduction.

In each iteration, SAT-Solver returns a tuple 〈assignment, result〉 in
line 4. If B is unsatisfiable, then so is ϕ: Lazy-Basic returns “Unsatisfiable” in
line 5. Otherwise, Lazy-Basic checks in line 7 whether T̂ h(α) is satisfiable, by
passing it to Deduction. Deduction returns a tuple of the form 〈constraint,
result〉 where the constraint is a clause over Σ-literals, and the result is one
of {“Satisfiable”, “Unsatisfiable”}. If it is “Satisfiable”, Lazy-Basic returns
“Satisfiable” in line 8 (recall that α is a full assignment). Otherwise, the
clause t returned by Deduction corresponds to a lemma about ϕ. In line 9,

�

�

�

�
t

Lazy-Basic continues by conjoining the propositional clause e(t) with B and
reiterating.

�

�

�

�

Algorithm 11.2.1: Lazy-Basic

Input: A formula ϕ
Output: “Satisfiable” if ϕ is satisfiable, and “Unsatisfiable” oth-

erwise

1. function Lazy-Basic(ϕ)
2. B := e(ϕ);
3. while (true) do
4. 〈α, res〉 := SAT-Solver(B);
5. if res =“Unsatisfiable” then return “Unsatisfiable”;
6. else
7. 〈t, res〉 := Deduction(T̂ h(α));
8. if res =“Satisfiable” then return “Satisfiable”;
9. B := B ∧ e(t);

Consider the following three requirements from the clause t that is returned
by Deduction:

1. The formula t is T -valid, i.e., t is a tautology in T . For example, if T is
the theory of equality, then x = y ∧ y = z =⇒ x = z is T -valid.
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2. The atoms in t are restricted to those appearing in ϕ.
3. The encoding of t contradicts α, i.e., e(t) is a blocking clause.

The first requirement is sufficient for guaranteeing soundness. The second and
third requirements are sufficient for guaranteeing termination. Specifically, the
third requirement guarantees that α is not repeated.

Two of the three requirements above can be weakened, however:

• Requirement 1: the clause t can be any formula that is implied by ϕ, and
not just a T -valid formula. However finding formulas that are on the one
hand implied by ϕ and on the other hand fulfill the other two requirements
may be as hard as deciding ϕ itself, which misses the point. In practice, the
amount of effort dedicated to computing t needs to be tuned separately
for each theory and decision procedure, in order to maximize the overall
performance.

• Requirement 2: the clause t may refer to atoms that do not appear in
ϕ, as long as the number of such new atoms is finite. For example, in
equality logic, we may allow t to refer to all atoms of the form xi = xj

where xi, xj are variables in var(ϕ), even if only some of these equality
predicates appear in ϕ.

11.2.3 Integration into DPLL

Let Bi be the formula B in the i-th iteration of the loop in Algorithm 11.2.1.
�

�

�

�
Bi

The constraint Bi+1 is strictly stronger than Bi for all i ≥ 1, because clauses
are added but not removed between iterations. It is not hard to see that this
implies that any conflict clause that is learned while solving Bi can be reused
when solving Bj for i < j. This, in fact, is a special case of incremental
satisfiability, which is supported by most modern SAT solvers.3 Hence, in-
voking an incremental SAT solver in line 4 can increase the efficiency of the
algorithm.

A better option is to integrate Deduction into the DPLL-SAT algo-
rithm, as shown in Algorithm 11.2.2. This algorithm uses a procedure Add-
Clauses, which adds new clauses to the current set of clauses at run time.
We leave the question of why this is a better option than using an incremental
SAT solver to the reader (see Problem 11.1).

11.2.4 Theory Propagation and the DPLL(T ) Framework

Algorithm 11.2.2 can be optimized further. Consider, for example, a formula
ϕ that contains an integer variable x1 and, among others, the literals x1 ≥ 10
and x1 < 0.

3 Incremental satisfiability is concerned with the more general case in which clauses
can also be removed. The question in that case is which conflict clauses can be
reused. See also Problem 2.12.
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�

�

�

�

Algorithm 11.2.2: Lazy-DPLL

Input: A formula ϕ
Output: “Satisfiable” if the formula is satisfiable, and “Unsatisfiable”

otherwise

1. function Lazy-DPLL
2. AddClauses(cnf (e(ϕ)));
3. if BCP() = “conflict” then return “Unsatisfiable”;
4. while (true) do

5. if ¬Decide() then

6. 〈t, res〉:=Deduction(T̂ h(α));
7. if res=“Satisfiable” then return “Satisfiable”;
8. AddClauses(e(t));
9. while (BCP() = “conflict”) do

10. backtrack-level := Analyze-Conflict();
11. if backtrack-level < 0 then return “Unsatisfiable”;
12. else BackTrack(backtrack-level);
13. else

14. while (BCP() = “conflict”) do

15. backtrack-level := Analyze-Conflict();
16. if backtrack-level < 0 then return “Unsatisfiable”;
17. else BackTrack(backtrack-level);

Assume that the Decide procedure assigns e(x1 ≥ 10) �→ true and
e(x1 < 0) �→ true. Inevitably, any call to Deduction results in a contradic-
tion between these two facts, independently of any other decisions that are
made. However, Algorithm 11.2.2 does not call Deduction until a full satis-
fying assignment is found. Thus, the time taken to complete the assignment is
wasted. Moreover, as was mentioned in the introduction to this chapter, the
refutation of this full assignment may be due to other reasons (i.e., a proof
that a different subset of the assignment is contradictory), and, hence, addi-
tional assignments that include the same wrong assignment to e(x1 ≥ 10) and
e(x1 < 0) are not ruled out.

Algorithm 11.2.2 can therefore be improved by running Deduction even
before a full assignment to the encoders is available. This early call to De-
duction can serve two purposes:

1. Contradictory partial assignments are ruled out early.
2. Implications of literals that are still unassigned can be communicated back

to the SAT solver, as demonstrated in the introduction to this chapter.
Continuing our example, once e(x1 ≥ 10) has been assigned true, we can
infer that e(x1 < 0) must be false and avoid the conflict altogether.

This brings us to the next version of the algorithm, called DPLL(T ),
which was first introduced in an abstract form by Tinelli [192]. As in Algo-
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rithms 11.2.1 and 11.2.2, the components of the algorithm are those of DPLL
and a decision procedure for a conjunctive fragment of a theory T . The name
DPLL(T ) emphasizes that this is a framework that can be instantiated with
different theories and corresponding decision procedures.

BCP
conflict Analyze-

Conflict UNSAT

Deduction AddClauses

α

t e(t)

Decide SAT

propagation
Theory

BackTrack

T̂ h(α)

dl ≥ 0

dl < 0

assignment
partial

assignment
full

/ conflict

Fig. 11.2. The main components of DPLL(T ). Theory propagation is implemented
in Deduction

In the version of DPLL(T ) presented in Algorithm 11.2.3 (see also
Fig. 11.2), Deduction is invoked in line 11 after no more implications can
be made by BCP. It then finds T -implied literals and communicates them to
the DPLL part of the solver in the form of a constraint t.4 Hence, in addition
to implications in the Boolean domain, there are now also implications due
to the theory T . Accordingly, this technique is known by the name theory
propagation.

What are the restrictions on these new clauses? As before, they have to
be implied by ϕ and restricted to the atoms in ϕ (or some finite superset

thereof). And, as before, when T̂ h(α) is unsatisfiable, e(t) has to block α. If

T̂ h(α) is satisfiable, we require t to fulfill one of the following two conditions
in order to guarantee termination:

1. The clause e(t) is an asserting clause under α (asserting clauses are defined
in Sect. 2.2). This implies that the addition of e(t) to B and a call to BCP
leads to an assignment to the encoder of some literal.

4 Deduction also returns the result res (whether T̂ h(α) is satisfiable), but res is
not used. We have kept it in the pseudocode in order for the algorithm to stay
similar to the previous algorithms.
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2. When Deduction cannot find an asserting clause t as defined above, t
and e(t) are equivalent to true.

The second case occurs, for example, when all the Boolean variables are al-
ready assigned, and thus the formula is found to be satisfiable. In this case,
the condition in line 13 is met and the procedure continues from line 5, where
Decide is called again. Since all variables are already assigned, the procedure
returns “Satisfiable”.

Example 11.2. Consider once again the example of the two encoders e(x1 ≥
10) and e(x1 < 0). After the first of these has been set to true, Deduction
detects that ¬(x1 < 0) is implied, or, in other words, that

t := ¬(x1 ≥ 10) ∨ ¬(x1 < 0) (11.18)

is T -valid. The corresponding encoded (asserting) clause

e(t) := (¬e(x1 ≥ 10) ∨ ¬e(x1 < 0)) (11.19)

is added to B, which leads to an immediate implication of ¬e(x1 < 0), and
possibly further implications.

�

�

�

�

Algorithm 11.2.3: DPLL(T )

Input: A formula ϕ
Output: “Satisfiable” if the formula is satisfiable and “Unsatisfi-

able” otherwise

1. function DPLL(T )
2. AddClauses(cnf (e(ϕ)));
3. if BCP() = “conflict” then return “Unsatisfiable”;
4. while (true) do
5. if ¬Decide() then return “Satisfiable”; ⊲ Full assignment
6. repeat
7. while (BCP() = “conflict”) do
8. backtrack-level := Analyze-Conflict();
9. if backtrack-level < 0 then return “Unsatisfiable”;

10. else BackTrack(backtrack-level);

11. 〈t, res〉:=Deduction(T̂ h(α));
12. AddClauses(e(t));
13. until t ≡ true
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11.2.5 Some Implementation Details of DPLL(T )

In order to improve performance, typical implementations of DPLL(T ) apply
various restrictions on t and how it is communicated to the DPLL-part of the
procedure.5

Theory Propagation

Unless α includes an assignment to the encoders of all theory literals, De-
duction performs theory propagation. Constructing an efficient mechanism
for theory propagation is a challenging task in its own right. It is important
to note that theory propagation is required not for correctness, but only for
efficiency. Hence, the amount of effort invested in computing new implications
needs to be well tuned in order to achieve the best overall performance.

The term exhaustive theory propagation refers to a procedure that
finds and propagates all literals that are implied in T by T̂ h(α). A simple,
generic way (called “plunging”) to perform theory propagation is the follow-

ing. Given an unassigned theory literal lit i, check whether T̂ h(α) ∧ ¬lit i is
unsatisfiable. If yes, then lit i is implied by the current assignment α. The set
of unassigned literals that are checked in this way depends on how exhaustive
we want the theory propagation to be. This generic method is typically not
the most efficient, however.

Consider, for example, the case in which T is equality logic. A simple way
to perform exhaustive theory propagation in this case is the following. For each
unassigned literal of the form xi = xj , check if the current partial assignment
forms an equality path between xi and xj . If yes, then this literal is implied
by the literals in the path. If the partial assignment forms a disequality path,
the negation of this literal is implied (see Definitions 4.5 and 4.6).

In many cases exhaustive theory propagation is not “cost-effective”. In
such cases, a better strategy is to perform only simple, inexpensive propaga-
tions, while ignoring more expensive ones. In the case of linear arithmetic, for
example, experiments have shown that exhaustive theory propagation has a
negative effect on overall performance. It is more efficient in this case to search
for simple-to-find implications, such as “if x > c holds, where x is a variable
and c a constant, then any literal of the form x > d is implied if d < c”.

Returning Implied Assignments Instead of Clauses

Another optimization of theory propagation is concerned with the way in
which the information discovered by Deduction is propagated to the Boolean

5 In addition to the optimizations and considerations described in this section, there
is a detailed and more concrete description of a C++ library that implements
some of these algorithms in Appendix B.
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part of the solver. So far, we have required that the clause returned by De-
duction be T -valid. For example, if α is such that T̂ h(α) implies a literal
lit i, then

t := (lit i ∨ ¬T̂ h(α)) . (11.20)

The encoded clause e(t) is of the form

(
e(lit i) ∨

∨

litj∈Th(α)

¬e(litj)
)

. (11.21)

Nieuwenhuis, Oliveras, and Tinelli concluded that this was an inefficient
method, however [142]. Their experiments on various sets of benchmarks
showed that on average, fewer than 0.5% of these clauses were ever used
again, and that the burden of these extra clauses slowed down the process.
They suggested a better alternative, in which Deduction returns a list of
implied assignments (containing e(lit i) in this case), which the SAT solver
performs.

These implied assignments have no antecedent clauses in B, in contrast to
the standard implications due to BCP. This causes a problem in Analyze-
Conflict (see Algorithm 2.2.2), which relies on antecedent clauses for de-
riving conflict clauses. As a solution, when Analyze-Conflict needs an
antecedent for such an implied literal, it queries the decision procedure for
an explanation, i.e., a clause implied by ϕ that implies this literal given the
partial assignment at the time the assignment was created.

The explanation of an assignment might be the same clause that could
have been delivered in the first place, but not necessarily: for efficiency reasons,
typical implementations of Deduction do not retain such clauses, and hence
need to generate a new explanation. As an example, to explain an implied
literal x = y in equality logic, one needs to search for an equality path in the
equality graph between x and y, in which all the edges were present in the
graph at the time that this implication was identified and propagated.

Generating Strong Lemmas

If T̂ h(α) is unsatisfiable, Deduction returns a blocking clause t to eliminate
the assignment α. The stronger t is, the greater the number of inconsistent
assignments it eliminates. One way of obtaining a stronger formula is to con-
struct a clause consisting of the negation of those literals that participate in
the proof of unsatisfiability of T̂ h(α). In other words, if S is the set of literals
that serve as the premises in the proof of unsatisfiability, then the blocking
clause is

t :=
( ∨

l∈S

¬l
)

. (11.22)
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Computing the set S corresponds to computing an unsatisfiable core of the
formula.6 Given a deductive proof of unsatisfiability, a core is easy to find.
For this purpose, one may represent such a proof as a directed acyclic graph,
as demonstrated in Fig. 11.3 (in this case for T being equality logic and
uninterpreted functions). In this graph the nodes are labeled with literals and
an edge (n1, n2) denotes the fact that the literal labeling node n1 was used in
the inference of the literal labeling node n2. In such a graph, there is a single
sink node labeled with false, and the roots are labeled with the premises
(and possibly axioms) of the proof. The set of roots that can be reached by a
backward traversal from the false node correspond to an unsatisfiable core.

x1 = x2

x2 = x3

x1 = x3

x2 = x4

F (x1) = F (x3)

F (x1) �= F (x3)
false

x3 = x4

Fig. 11.3. The premises of a proof of unsatisfiability correspond to roots in the
graph that can be reached by backward traversal from the false node (in this case
all roots other than x3 = x4). Whereas lemmas correspond to all roots, this subset
of the roots can be used for generating strong lemmas

Immediate Propagation

Now consider a variation of this algorithm that calls Deduction after ev-
ery new assignment to an encoding variable – which may be due to either
a decision or a BCP implication – rather than letting BCP finish first. Fur-
thermore, assume that we are implementing exhaustive theory propagation as
described above. This combination of features is quite common in competitive
implementations of DPLL(T ).

In this variant, a call to Deduction cannot lead to a conflict, which means
that it never has to return a blocking clause. A formal proof of this observation
is left as an exercise (Problem 11.6). An informal justification is that if an

assignment to a single encoder makes T̂ h(α) unsatisfiable, then the negation
of that assignment would have been implied and propagated in the previous

6 Unsatisfiable cores are defined for the case of propositional CNF formulas in
Sect. 2.2.6. The brief discussion here generalizes this earlier definition to inference
rules other than Binary Resolution.
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step by Deduction. For example, if an encoder e(x = y) is implied and
communicated to Deduction, this literal can cause a conflict only if there is a
disequality path between x and y according to the previous partial assignment.
This means that in the previous step, ¬e(x = y) should have been propagated
to the Boolean part of the solver.

Aside: Case-Splitting with BDDs
In any of the lazy algorithms described in this chapter, the service provided

by the DPLL part can also be provided by a BDD. Assume we have a BDD
corresponding to the propositional skeleton e(ϕ). Each path to the “1” node
in this BDD corresponds to an assignment that satisfies e(ϕ). Hence, if one of

these paths corresponds to an assignment α such that T̂ h(α) is T -satisfiable,
then the original formula is satisfiable. Checking these paths one at a time
is better than the basic SAT-based lazy approach for at least two reasons:
first, computing each path is linear in the number of variables, in contrast
to the worst-case exponential time with SAT; second, in a BDD, most of the
full paths from the root to the “1” node typically do not go through all the
variables, and therefore correspond to partial assignments, which are expected
to be easier to satisfy. The drawback of this method, on the other hand, is that
the BDD can become too large (recall that it may require exponential space).
Some publications from the late 90’s on equality logic [87] and difference
logic [130] were based on a naive version of this procedure. None of these
techniques, however, apply optimizations such as strong lemmas and theory
propagation, which were developed only a few years later. Such optimizations
should not be too hard to implement. Theory propagation, for example, could
be naturally implemented by calling Deduction after visiting every node
while traversing a path from top to bottom in the BDD. The formula returned
by Deduction should then be conjoined with the BDD, and the procedure
restarted. No one, as far as we know, has experimented with a BDD-based
approach combined with such optimizations.

11.3 Propositional Encodings with Proofs (Advanced)

In this section, we generalize the algorithms described earlier in this chapter,
and in particular the process of constructing the constraint t in the procedure
Deduction. We assume that Deduction generates deductive proofs, and
show that this fact can be used to derive a tautology t, assuming that the
proof system used in Deduction is sound. In this method, the encoding of
t, namely e(t), represents the antecedent/consequent relations of the proof.

As a second step, we use this proof-based approach to demonstrate how
to perform a full reduction from the problem of deciding Σ-formulas to one
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of deciding propositional formulas. Such direct reductions are known by the
name eager encodings, since, in contrast to the lazy approach, all the neces-
sary clauses are added to the propositional skeleton up-front, or eagerly. The
resulting propositional formula is therefore equisatisfiable with the input for-
mula ϕ, and the SAT solver is invoked only once, with no further interaction
with DPT .

11.3.1 Encoding Proofs

A deductive proof is constructed using a predefined set of proof rules (also
called inference rules), which we assume to be sound. A proof rule consists of
a set of antecedents A1, . . . , Ak, which are the premises that have to hold for
the rule to be applicable, and a consequent C.

Definition 11.3 (proof steps). A proof step s is a triple (Rule, Conseq,
Antec), where Rule is a proof rule, Conseq is a proposition, and Antec is a
(possibly empty) set of antecedents A1, . . . , Ak.

Definition 11.4 (proof). A proof P = {s1, . . . , sn} is a set of proof steps in
�

�

�

�
P

which the transitive antecedence relation is acyclic.

The fact that the dependence between the proof steps is directed and acyclic
is captured by the following definition.

Definition 11.5 (proof graph). A proof graph is a directed acyclic graph
in which the nodes correspond to the steps, and there is an edge (x, y) if and
only if the consequent of x represents an antecedent of step y.

We now define a proof step constraint.

Definition 11.6 (proof step constraint). Let s = (Rule, Conseq , Antec)
denote a proof step, and let Antec = {A1, . . . , Ak} be the set of antecedents
of s. The proof step constraint psc(s) of s is the constraint

�

�

�

�

psc(s)

psc(s)
.
=

(
k∧

i=1

(Ai)

)
=⇒ (Conseq) . (11.23)

We can now obtain the constraint for a whole proof by simply conjoining the
constraints for all its steps.

Definition 11.7 (proof constraint). Let P = {s1, . . . , sn} denote a proof.
The proof constraint P̂ induced by P is the conjunction of the constraints

�

�

�

�
P̂

induced by its steps:

P̂
.
=

n∧

i=1

psc(si) . (11.24)
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Since a proof constraint merely represents relations that are correct by con-
struction (assuming, again, that the proof rules are sound), it is always a
tautology. This, in turn, implies that Deduction can safely return a proof
constraint in any of the lazy algorithms described earlier in this chapter.

Blocking clauses and asserting clauses (those that are returned for the pur-
pose of theory propagation) are special cases of proof constraints. To see why,
recall that we have assumed that Deduction infers these clauses through
deductive proofs. But these clauses are not necessarily the proof constraints
themselves. However, there exists a sound proof for which these clauses are
the respective proof constraints. Intuitively, this is because if we infer a con-
sequent from a set of antecedents through the application of several sound
proof rules, then this means that we can construct a single sound proof rule
that relates these antecedents directly to the consequent.

Using these observations, we can require Deduction to return a proof
constraint as defined above. Observe that if we rewrite psc (11.23) as a CNF
clause, then e(P̂ ) is in CNF.

11.3.2 Complete Proofs

Recall that given a formula ϕ, its propositional skeleton e(ϕ) has no negations
and is therefore trivially satisfiable.

Theorem 11.8. If ϕ is satisfiable, then for any proof P , e(ϕ) ∧ e(P̂ ) is sat-
isfiable.

Theorem 11.8 is useful if we find a proof P such that e(ϕ)∧e(P̂ ) is unsatisfiable.
In such a case, the theorem implies the unsatisfiability of ϕ. In other words,
we would like to restrict ourselves to proofs with the following property:

Definition 11.9 (complete proof). A proof P is called complete with re-
spect to ϕ if e(ϕ) ∧ e(P̂ ) is equisatisfiable with ϕ.

Note that Theorem 11.8 implies that if the formula is satisfiable, then any
proof is complete. Our focus is therefore on unsatisfiable formulas.

Theorem 11.10. Given a sound and complete deductive decision procedure
for a conjunction of Σ-literals, there is an algorithm for deriving a complete
proof for every Σ-formula.

Proof. (sketch) Let ϕ′ be the DNF representation of a Σ-formula ϕ. Let DPT

be a deductive, sound, and complete decision procedure for a conjunction of
Σ-literals. We use DPT to prove each of the terms in ϕ′. The union of the proof
steps in these proofs (together with a proof step for case-splitting) constitutes
a complete proof for ϕ′.
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The goal, however, is to find complete proofs with smaller practical com-
plexity than that of performing such splits: there is no point in having a pro-
cedure in which the encoding process is as complex as performing the proof
directly.

Our strategy is to find deductive proofs that begin from the literals of
the input formulas, leaving it for the SAT solver to deal with the Boolean
structure.

Example 11.11. Consider the unsatisfiable formula

ϕ := x = 5 ∧ (x < 0 ∨ x �= 5) . (11.25)

The skeleton of ϕ is

e(ϕ) := e(x = 5) ∧ (e(x < 0) ∨ e(x �= 5)) . (11.26)

a < succi(a)
(Ordering I)

x < y y < x

false
(Ordering II)

x 
= x

false
(Eq-Contradiction)

x = a P

P [x/a]
(Substitution)

Fig. 11.4. Inference rules for the proof P in Fig. 11.5. Ordering I is an axiom
schema, which uses succi(a) to denote the i-th successor, i > 0, of a

Conseqent Rule e(psc(s))

1. x = 5 Premise
2. x 
= 5 Premise
3. x < 0 Premise
4. 5 < 0 Substitution, 1, 3 e(x = 5) ∧ e(x < 0) =⇒ e(5 < 0)
5. 0 < 5 Ordering I (i = 5) e(0 < 5)
6. false Ordering II, 4, 5 e(5 < 0) ∧ e(0 < 5) =⇒ false
7. 5 
= 5 Substitution, 1, 2 e(x = 5) ∧ e(x 
= 5) =⇒ e(5 
= 5)
8. false Eq-Contradiction, 7 e(5 
= 5) =⇒ false

Fig. 11.5. Proof of unsatisfiability of ϕ := x = 5∧ (x < 0∨ x 
= 5), using the rules
in Fig. 11.4. The only premises are the literals in the formula. The proof steps are
annotated in the right column with the constraints that they induce

Using the proof rules in Fig. 11.4, we show a contradiction using the proof
P , which appears in Fig. 11.5. Note that P uses only literals as antecedents.
The encoded proof constraint is:
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e(P̂ ) := (e(x = 5) ∧ e(x < 0) =⇒ e(5 < 0))
∧ (e(0 < 5))
∧ (e(5 < 0) ∧ e(0 < 5) =⇒ false)
∧ (e(x = 5) ∧ e(x �= 5) =⇒ e(5 �= 5))
∧ (e(5 �= 5) =⇒ false) .

(11.27)

The conjunction of e(ϕ) and e(P̂ ) is unsatisfiable, and thus, owing to Theo-
rem 11.8, ϕ is unsatisfiable.

How can we find such proofs that use only the literals of ϕ as premises?
The next subsection answers this question. It introduces the eager approach,
in which all necessary proof steps, starting from ϕ’s literals as premises, are
computed a priori. The resulting proof constraint, conjoined with the propo-
sitional skeleton, are then sent to a SAT solver.

11.3.3 Eager Encodings

All the algorithms that we have seen so far can be interpreted as being aimed
at constructing a propositional formula B that is equisatisfiable with the orig-
inal formula T . If B has this property, we say that it is a propositional
encoding of ϕ. The various lazy approaches that we studied in Sect. 11.2
can be understood as building a propositional encoding of ϕ incrementally
(or “lazily”).

In contrast, Algorithm 11.3.1 (Eager-Encoding) computes a proposi-
tional encoding of a given formula ϕ in a single step. All the proof steps that
might be necessary are assumed to be performed by the Deduction proce-
dure before the propositional engine is called.7 The premises that Deduction
can use either are axioms or belong to the set that it receives as input.

�

�

�

�

Algorithm 11.3.1: Eager-Encoding

Input: A formula ϕ
Output: “Satisfiable” if ϕ is satisfiable and “Unsatisfiable” oth-

erwise

1. function Eager-Encoding(ϕ)
2. P := Deduction(lit(ϕ));
3. ϕE := e(ϕ) ∧ e(P̂ );
4. 〈α, res〉 := SAT-Solver(ϕE);
5. if res =“Unsatisfiable” then return “Unsatisfiable”;
6. else return “Satisfiable”;

7 We overload Deduction in this algorithm: it receives a set of literals rather than
their conjunction as input, and returns a proof rather than an arbitrary tautology
over the atoms of the input.
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The SAT-Solver procedure returns a pair 〈assignment, result〉 in line 4,
where “result” is one of {“Satisfiable”,“Unsatisfiable”}, and “assignment” is a
full satisfying assignment if “result” = “Satisfiable”, and undefined otherwise.

The result of Eager-Encoding matches the result returned by SAT-
Solver, as ϕ and ϕE are equisatisfiable. It is left for us to describe sufficient
conditions for complete proofs. In other words, it is enough to prove that a
given implementation of Deduction fulfills any one of these conditions in
order to establish completeness of the procedure.

11.3.4 Criteria for Complete Proofs

Let α be either a partial or a full truth assignment to e(ϕ). The following
notation is used: we write Th(α) −→P false if P leads to false using Th(α)
as premises. The following example demonstrates the use of this notation.

Example 11.12. Let

lit1 := x1 > x2, lit2 := x2 ≤ x1 (11.28)

be the literals of a formula ϕ. Now consider the assignment

α := {e(x1 > x2) �→ true, e(x2 ≤ x1) �→ false} . (11.29)

Thus, we have

Th1(α) := x1 > x2, Th2(α) := ¬(x2 ≤ x1) , (11.30)

and
Th(α) := {x1 > x2, x2 > x1} . (11.31)

Now consider the proof rules

xi > xj xj > xk

xi > xk

(>-Trans) ,

xi > xi

false
(>-Contr) ,

(11.32)

and consider Th(α) as the set of premises. Let P be the following proof:

P := { (>-Trans, x1 > x1, Th(α)), (>-Contr, false, x1 > x1) } .
(11.33)

This proof shows that Th(α) is inconsistent, i.e., Th(α) −→P false.

The following theorem defines a sufficient condition for the completeness
of a proof.

Theorem 11.13 (sufficient condition #1 for completeness). Let ϕ be
an unsatisfiable formula. A proof P is complete with respect to ϕ if, for every
full assignment α to e(ϕ),

α |= e(ϕ) =⇒ Th(α) −→P false . (11.34)
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The premise of this theorem can be weakened, however, which leads to a
stronger theorem. We need the following definitions.

Definition 11.14 (satisfying partial assignment). A partial assignment
α to the variables in var(e(ϕ)) satisfies e(ϕ) if, for any full assignment α′

that extends α, α′ |= e(ϕ).

Definition 11.15 (minimal satisfying assignment). An assignment α
(either full or partial) that satisfies e(ϕ) is called minimal if, for any e ∈
var(e(ϕ)) that is assigned by α, α without e is not a satisfying partial assign-
ment to e(ϕ).

Theorem 11.16 (sufficient condition #2 for completeness). Let ϕ be
an unsatisfiable formula, and let A denote the set of minimal satisfying as-
signments of e(ϕ). A proof P is complete with respect to ϕ if, for every α ∈ A,
Th(α) −→P false.

Now consider a weaker requirement for complete proofs.

Theorem 11.17 (sufficient condition #3 for completeness). Let ϕ be
an unsatisfiable formula, and let A denote the set of minimal satisfying as-
signments of e(ϕ). A proof P is complete with respect to ϕ if, for every α ∈ A
and for some unsatisfiable core Thuc(α) ⊆ Th(α), Thuc(α) −→P false.

Note that there is at least one unsatisfiable core because T̂ h(α) must be
unsatisfiable if α |= e(ϕ) and ϕ is unsatisfiable.

It is not hard to see that Theorem 11.17 implies Theorem 11.16, which,
in turn, implies Theorem 11.13 (see Problem 11.8). Hence we shall prove only
Theorem 11.17.

Proof. Let ϕ be an unsatisfiable formula. Assume falsely that e(ϕ) ∧ e(P̂ )
is satisfiable, where P satisfies the premise of Theorem 11.17, i.e., for each
minimal satisfying assignment α of e(ϕ), it holds that Thuc(α) −→P false for
some unsatisfiable core Thuc(α) ⊆ Th(α). Let α′ be the satisfying assignment,
and let α be a minimal satisfying assignment of e(ϕ) that can be extended
to α′. Let Thuc(α) ⊆ Th(α) denote an unsatisfiable core of Th(α) such that
Thuc(α) −→P false. This implies that e(P̂ ) evaluates to false when the
encoders of the literals in this core are evaluated according to α. This implies
that e(ϕ) ∧ e(P̂ ) evaluates to false under α – a contradiction.

The problem, now, is to find a proof P that fulfills one or more of these
sufficient conditions.

11.3.5 Algorithms for Generating Complete Proofs

Recall that by Theorem 11.10 (or, rather, by its proof), a sound and com-
plete deductive decision procedure for a conjunction of terms can be used to
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generate complete proofs, simply by case-splitting and conjoining the proof
steps. As discussed earlier, however, this type of procedure misses the point,
as we want to find such proofs with less effort than if we were to use splitting.
We now study strategies for modifying such procedures so that they generate
complete proofs from disjunctive formulas with potentially less effort than
that required by splitting. The procedures that we study in this section are
generic, and fulfill conditions much stronger than are required according to
Theorems 11.13, 11.16, and 11.17. More specific procedures are expected to
be more efficient and utilize the weaker conditions in those theorems.

We need the following definition.

Definition 11.18 (saturation). Let Γ be an inference system (i.e., a set
�

�

�

�
Γ

of inference rules and axioms, including schemas). We say that the process
of applying Γ to a set of premises saturates if no new consequents can be
derived on the basis of these premises and previously derived consequents. Γ
is said to be saturating if the process of applying it to any finite set of premises
saturates.

In this section, we consider the class of decision procedures whose underlying
inference system is saturating. Many popular decision procedures belong to
this class. For example, the simplex method, the Fourier–Motzkin elimination
and the Omega test, all of which are covered in Chap. 5, can be presented as
being based on deduction and belong to this class.8

As before, let DPT be a deductive decision procedure in this class for
conjunction of Σ-literals, and let Γ be the set of inference rules that it can
use. Let ϕ be a (disjunctive) Σ-formula. Now consider the following procedure:

Apply the rules in Γ to lit(ϕ) until saturation.

Since every inference that is possible after case-splitting is also possible here,
this procedure clearly generates a complete proof. Note that the generality of
this variant comes at the price of completely ignoring the inference strategy
applied by the original decision procedure DPT , which entails a sacrifice in
efficiency. Nevertheless, even with this general scheme, the number of infer-
ences is expected to be much smaller than that obtained using case-splitting,
because the same inference is never repeated (whereas it can be repeated an
exponential number of times with case-splitting).

Specific decision procedures that belong to this class can be changed in
a way that results in a more efficient procedure, however. Here, we consider
the case of projection-based decision procedures, and present it through an
example, namely the Fourier–Motzkin procedure for linear arithmetic (see
Sect. 5.4).

8 It is not so simple to present the simplex method as a deductive system, but
such a presentation appears in the literature. See Nelson [134] and Ruess and
Shankar [170] for a deductive version of the simplex method.
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The Fourier–Motzkin procedure, although not presented this way in Ch-
ap. 5, can be reformulated as a deductive system, by applying the following
rules:

UB ≥ x x ≥ LB

UB ≥ LB
(Project) (11.35)

(where UB and LB are linear constraints that do not include x), and, for any
two constants l, u such that l ≤ u,9

l > u

false
(Constants) . (11.36)

Given a conjunction of normalized linear arithmetic predicates φ (i.e., equal-
ities and negations are eliminated, as explained in Sect. 5.4), the strategy of
the Fourier–Motzkin procedure can be reformulated, informally, as follows:

1. If var(φ) = ∅ return “Satisfiable”.
2. Choose a variable v ∈ var(φ).
3. For every upper bound UB and a lower bound LB on x, apply the rule

Project.
4. Simplify the resulting constraints by accumulating the coefficients of the

same variable.
5. Remove all the constraints that contain x.
6. If the rule Constants is applicable, return “Unsatisfiable”.
7. Go to step 2.

Now consider the following variation of this procedure, which is meant for
generating complete proofs rather than for deciding a given formula. Replace
step 6 with

6. If the rule Constants is applicable, apply it.

The following example demonstrates this technique.

Example 11.19. Consider the following formula,

ϕ := (2x1 − x2 ≤ 0) ∧ (x3 − x1 ≤ −1) ∧
(((1 ≤ x3) ∧ (x2 ≤ 3)) ∨ ((0 ≤ x3) ∧ (x2 ≤ 1)))

(11.37)

and its corresponding skeleton,

e(ϕ) := e(2x1 − x2 ≤ 0) ∧ e(x3 − x1 ≤ −1)∧
((e(1 ≤ x3) ∧ e(x2 ≤ x3)) ∨ (e(0 ≤ x3) ∧ e(x2 ≤ 1))) .

(11.38)

Let x1, x2, x3 be the elimination order. The corresponding proof, according to
the newly suggested procedure, is

9 This means that the rule is applicable only when this condition is met. Such
conditions are called side conditions.
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P := { (Project , 2x3 − x2 ≤ −2 , {2x1 − x2 ≤ 0, x3 − x1 ≤ −1} )
(Project , 2x3 ≤ 1 , {x2 ≤ x3, 2x3 − x2 ≤ −2} )
(Project , 2x3 ≤ −1 , {x2 ≤ 1, 2x3 − x2 ≤ −2} )

(Project , 1 ≤ 1
2 , {1 ≤ x3, 2x3 ≤ 1} )

(Constants , false , {1 ≤ 1
2} )

(Project , 1 ≤ −1
2 , {1 ≤ x3, 2x3 ≤ −1} )

(Constants , false , {1 ≤ −1
2} )

(Project , 0 ≤ 1
2 , {0 ≤ x3, 2x3 ≤ 1} )

(Project , 0 ≤ −1
2 , {0 ≤ x3, 2x3 ≤ −1} )

(Constants , false , {0 ≤ −1
2} ) } .

(11.39)
The corresponding encoding of the proof constraint is thus

e(P̂ ) := (e(2x1 − x2 ≤ 0) ∧ e(x3 − x1 ≤ −1) =⇒ e(2x3 − x2 ≤ −2) )
∧ (e(x2 ≤ x3) ∧ e(2x3 − x2 ≤ −2) =⇒ e(2x3 ≤ 1) )
∧ (e(x2 ≤ 1) ∧ e(2x3 − x2 ≤ −2) =⇒ e(2x3 ≤ −1) )

∧ (e(1 ≤ x3) ∧ e(2x3 ≤ 1) =⇒ e(1 ≤ 1
2 ) )

∧ (e(1 ≤ 1
2 ) =⇒ false )

∧ (e(1 ≤ x3) ∧ e(2x3 ≤ −1) =⇒ e(1 ≤ − 1
2 ) )

∧ (e(1 ≤ −1
2 ) =⇒ false )

∧ (e(0 ≤ x3) ∧ e(2x3 ≤ 1) =⇒ e(0 ≤ 1
2 ) )

∧ (e(0 ≤ x3) ∧ e(2x3 ≤ −1) =⇒ e(0 ≤ − 1
2 ) )

∧ (e(0 ≤ −1
2 ) =⇒ false ) .

(11.40)
The conjunction of (11.38) and (11.40) is unsatisfiable, as is the original for-
mula ϕ.

This example demonstrates also the disadvantage of this approach in com-
parison with the lazy approach: many of the added constraints are redundant.
In this example, e(1 ≤ x3) and e(x2 ≤ x3) do not have to be satisfied simul-
taneously with e(0 ≤ x3) and e(x2 ≤ 1), because of the disjunction between
them. Hence a constraint such as (e(1 ≤ x3) ∧ e(2x3 ≤ −1) =⇒ e(1 ≤ − 1

2 ))
is redundant, because e(2x3 ≤ −1) is forced to be true only when e(x2 ≤ 1)
is assigned true. Hence, e(1 ≤ −1

2 ) is assigned true only when at least
e(1 ≤ x3) and e(x2 ≤ 1) are assigned true, whereas we have seen that these
two encoders need not be satisfied simultaneously in order to satisfy e(ϕ).

Two questions come to mind. First, does the above procedure generate
fewer proof steps than does saturation? The answer is yes. To see why, consider
what a saturation-based procedure would do on the basis of the above two
rules. For each variable, at each step, it would apply the rule Project. Hence,
the overall set of proof steps corresponds to the union of proof steps when the
Fourier–Motzkin procedure is applied in all possible orders. Second, is the
generated proof still complete? Again, the answer is yes, and the proof is
based on showing that it maintains the premise of Theorem 11.13. In fact, it
maintains a much stronger condition – see Problem 11.9.
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11.4 Problems

Problem 11.1 (incrementality in Lazy-DPLL). Recall that an incremen-
tal SAT solver is one that knows which conflict clauses can be reused when
given a problem similar to the previous one (i.e., some clauses are added and
others are erased). Is there a difference between Algorithm 11.2.2 (Lazy-
DPLL) and replacing line 4 in Algorithm 11.2.1 with a call to an incremental
SAT solver?

Problem 11.2 (an optimization for Algorithms 11.2.1–11.2.3?).

1. Consider the following variation of Algorithms 11.2.1–11.2.3 for an input
formula ϕ given in NNF. Rather than sending T̂ h(α) to Deduction, send∧

Thi for all i such that α(ei) = true. For example, given an assignment

α := {e(x = y) �→ true, e(y = z) �→ false, e(x = z) �→ true} ,
(11.41)

check
x = y ∧ x = z . (11.42)

Is this variation correct? Prove that it is correct or give a counterexample.
2. Show an example in which the above variation reduces the number of

iterations between Deduction and the SAT solver.

Problem 11.3 (theory propagation for difference logic). Suggest an
efficient procedure that performs exhaustive theory propagation for the case
of difference logic (difference logic is presented in Sect. 5.7).

Problem 11.4 (theory propagation). Let DPT be a decision procedure
for a conjunction of Σ-literals. Suggest a procedure for performing exhaustive
theory propagation with DPT .

Problem 11.5 (pseudocode for a variant of DPLL(T )). Recall the vari-
ant of DPLL(T ) suggested at the end of Sect. 11.2.5, where the partial assign-
ment is sent to the theory solver after every assignment to an encoder, rather
than only after BCP. Write pseudocode for this algorithm, and a correspond-
ing drawing in the style of Fig. 11.2.

Problem 11.6 (exhaustive theory propagation). It was claimed in Sect.
11.2.5 that with exhaustive theory propagation, conflicts cannot occur in De-
duction and that, consequently, Deduction never returns blocking clauses.
Prove this claim.

Problem 11.7 (practicing eager encodings). Consider the following for-
mula:

ϕ := (2x1 − x2 ≤ 0) ∧
((2x2 − 4x3 ≤ 0) ∨ (x3 − x1 ≤ −1) ∨ ((0 ≤ x3) ∧ (x2 ≤ 1))) .

(11.43)
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Show an eager encoding of this formula, using the rules Project and Con-
stants (see p. 261). Check that the resulting formula is equisatisfiable with
ϕ.

Problem 11.8 (proof of Theorems 11.13 and 11.16). Prove Theo-
rems 11.13 and 11.16 without referring to Theorem 11.17.

Problem 11.9 (complete proofs). Consider the variant of the Fourier–
Motzkin procedure that was presented in Sect. 11.3.5. Show that the generated
proof P proves the inconsistency of every inconsistent subset of literals. In
what sense does this fulfill a stronger requirement than what is required by
Theorem 11.13?

Problem 11.10 (complexity of eager encoding with the Fourier–
Motzkin procedure). Consider the variant of the Fourier-Motzkin proce-
dure that was presented in Sect. 11.3.5. What is the complexity of this decision
procedure?

11.5 Bibliographic Notes

The following are some bibliographic details about the development of the
lazy and the eager encoding frameworks.

Lazy Encodings

Alessandro Armando, Claudio Castellini and Enrico Giunchiglia in [4] pro-
posed a solver based on an interplay between a SAT solver and a theory
solver, in a fashion similar to the simple lazy approach introduced at the be-
ginning of this chapter in 1999. Their solver was tailored to a single theory
called disjunctive temporal constraints, which is a restricted version of dif-
ference logic. In fact, they combined lazy with eager reasoning: they used a
preprocessing step that adds a large set of constraints to the propositional
skeleton (constraints of the form (¬e1 ∨ ¬e2) if a preliminary check discov-
ers that the theory literals corresponding to these encoders contradict each
other), which saves a lot of work later for the lazy-style engine. In the same
year LPSAT [202] was introduced, which also includes many of the features
described in this chapter, including a process of learning strong lemmas.

The basic idea of integrating DPLL with a decision procedure for some
(single) theory was suggested even earlier than that mostly in the domain of
modal and description logics [5, 86, 97, 148].

The major progress in efficient SAT solving due to the Chaff SAT solver
in 2001 [133], led several groups, a year later, to (independently) propose de-
cision procedures that leverage this progress, all of which correspond to some
variation of the lazy approach described in Sect. 11.2: CVC [13, 188] by Aaron
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Stump, Clark Barrett and David Dill; ICS-SAT [74] by Jean-Christophe Fil-
liatre, Sam Owre, Herald Ruess and Natarajan Shankar; MathSAT [6] by
Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilowicz,
and Roberto Sebastiani; DLSAT [120] by Moez Mahfoudh, Peter Niebert, Eu-
gene Asarin, and Oded Maler; and VeriFun [76] by Cormac Flanagan, Rajeev
Joshi, Xinming Ou and Jim Saxe. Most of these tools were built as generic
engines that can be extended with different decision procedures. Since the in-
troduction of these tools, this approach has become mainstream, and at least
ten other solvers based on the same principles have been developed and pub-
lished. In fact, all the tools that participated in the SMT-COMP competitions
in 2005–2007 (see Appendix A) belong to this category of solvers.

DPLL(T ) was originally described in abstract terms, in the form of a cal-
culus, by Cesare Tinelli in [192]. Theory propagation had already appeared
under various names in the papers by Armando et al. [4] and Audemard et
al. [6] mentioned above. Efficient theory propagation tailored to the underlying
theory T (T being EUF in that case) appeared first in a paper by Ganzinger
et al. [79]. These authors also introduced the idea of propagating theory im-
plications by maintaining a stack of such implied assignments, coupled with
the ability to explain them a posteriori, rather than sending asserting clauses
to the DPLL part of the solver. The idea of minimizing the lemmas (block-
ing clauses) can be attributed to Leonardo de Moura and Herald Ruess [60],
although, as we mentioned earlier, finding small lemmas already appeared in
the description of LPSAT.

Various details of how a DPLL-based SAT solver could be transformed
into a DPLL(T ) solver were described for the case of EUF in [79] and for
difference logic in [140]. A good description of DPLL(T ), starting from an
abstract DPLL procedure and ending with fine details of implementation,
was given in [142]. A very comprehensive survey on lazy SMT was given by
Sebastiani [175]. There has been quite a lot of research on how to design T -
solvers that can give explanations, which, as pointed out in Sect. 11.2.5, is a
necessary component for efficient implementation of this framework – see, for
example, [62, 141, 190].

Among the new generation of tools, let us mention four. CVC-Lite [9] and
later CVC-3[11], the development of which was led by Clark Barrett, are mod-
ernized versions of CVC, which extend it with new theories (such as an exten-
sive support for recursive data-types), improve its implementation of various
decision procedures, enable each theory to produce a proof that can be checked
independently with an external tool, make it compatible with the SMT-LIB
standard (see Appendix A), and so forth. Barcelogic [79] was developed
by Robert Nieuwenhuis and Albert Oliveras, and won the SMT-COMP 2005
competition. Finally, Yices, which was developed by Bruno Dutertre and
Leonardo de Moura, won in most of the categories in both SMT-COMP 2006
and SMT-COMP 2007. Only a few details of Yices [58] have been published.
It is a DPLL(T ) solver, which uses very efficient implementations of decision
procedures for the various theories it supports. Its decision procedure for lin-
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ear arithmetic, based on the generalized simplex method, is the best known
for 2006–2007 and has been described in [70]. Finally, let us also mention the
Decision Procedure Toolkit (DPT), released as open source by IntelTM, which
combines a modern implementation of DPLL(T) with various theory solvers.
DPT was written by Amit Goel, Jim Grundy and Sava Krstic and is described
in [109].

The lazy approach opens up new opportunities with regard to implement-
ing the Nelson–Oppen combination procedure, described in the previous chap-
ter. A contribution by Bozzano et al. [28] suggests a technique called delayed
theory combination. Each pair of shared variables is encoded with a new
Boolean variable (resulting in a quadratic increase in the number of variables).
After all the other encoding variables have been assigned, the SAT solver be-
gins to assign values (arbitrary at first) to the new variables, and continues
as usual, i.e., after every such assignment, the current partial assignment is
sent to a theory solver. If any one of the theory solvers “objects” to the ar-
rangement implied by this assignment (i.e., it finds a conflict with the current
assignment to the other literals), this leads to a conflict and backtracking.
Otherwise, the formula is declared satisfiable. This way, each theory can be
solved separately, without passing information about equalities. Empirically,
this method is very effective, both because the individual theory solvers need
not worry about propagating equalities, and because only a small amount of
information has to be shared between the theory solvers in practice – far less,
on average, than is passed during the normal execution of the Nelson–Oppen
procedure.

A different approach has been proposed by de Moura and Bjørner [59].
These authors also make the equalities part of the model, but instead of letting
the SAT solver decide on their values, they attempt to compute a consistent
assignment to the theory variables that is as diverse as possible. The equalities
are then decided upon by following the assignment to the theory variables.

We mentioned in the aside on p. 253 the option of using BDDs, rather than
SAT, for performing lazy encoding. As mentioned, a naive procedure where
the predicates label the nodes appeared in [87] and [130]. In the context of
hardware verification there have been quite a few publications on multiway
decision graphs [53], a generalization of BDDs to various first-order theories.

Eager Encodings

Some of the algorithms presented in earlier chapters are in fact eager-style
decision procedures. The reduction methods for equality logic that are pre-
sented in Sect. 4.4 are such algorithms [39, 126]. A similar procedure for
difference logic was suggested by Ofer Strichman, Sanjit Seshia, and Randal
Bryant in [187]. Procedures that are based on small-domain instantiation (see
Sect. 4.5 and a similar procedure for difference logic in [191]) can also be seen
as eager encodings, although the connection is less obvious: the encoding is
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based not on the skeleton and additional constraints, but rather on an en-
coding of predicates (equalities, inequalities, etc., depending on the theory)
over finite-range variables. The original procedure in [154] used multitermi-
nal BDDs rather than SAT to solve the resulting propositional formula. We
should also mention that there are hybrid approaches, combining encodings
based on small-domain instantiation and explicit constraints, such as the work
by Seshia et al. on difference logic [177].

The first proof-based reduction corresponding to an eager encoding (from
integer- and real-valued linear arithmetic) was introduced by Ofer Strich-
man [186]. The procedure was not presented as part of a more general frame-
work of using deductive rules as described in this chapter. The proof was
generated in an eager manner using Fourier–Motzkin variable elimination for
the reals and the Omega test for the integers. The example in Sect. 11.3.5 is
based on the Boolean Fourier–Motzkin reduction algorithm suggested in [186].

There are only a few publicly available, supported decision procedures
based on eager encoding, most notably Uclid [40], which was developed by
Randal Bryant, Shuvendu Lahiri, and Sanjit Seshia. As mentioned earlier in
this chapter, the eager approach is, at least at the time of writing, considered
empirically inferior to the lazy approach.

11.6 Glossary

The following symbols were used in this chapter:

First used
Symbol Refers to . . . on page . . .

e(l) The propositional encoder of a Σ-literal l 241

α(t) A truth assignment (either full or partial) to the
variables of a formula t

241

lit(ϕ) The literals of ϕ 244

lit i(ϕ) Assuming some predefined order on the literals, this
denotes the i-th distinct literal in ϕ

244

α An assignment (either full or partial) to the literals 244

Th(lit i, α) See (11.11) 244

Th(α) See (11.12) 244

continued on next page
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continued from previous page

First used
Symbol Refers to . . . on page . . .

T̂ h(α) The conjunction over the elements in Th(α) 244

B A Boolean formula. In this chapter, initially set to
e(ϕ), and then strengthened with constraints

245

t For a Σ-theory T , t represents a Σ-formula (typi-
cally a clause) returned by Deduction

245

Bi The formula B in the i-th iteration of the loop in
Algorithm 11.2.1

246

P A proof – see Definition 11.4 254

psc(s) A proof step constraint – see Definition 11.6. An
implication between the antecedents and the con-
sequent of a proof rule

254

P̂ See Definition 11.7. A conjunction of psc(s) for all
proof steps s in a proof P

254

Γ An arbitrary inference system 260
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The Satisfiability-Modulo-Theory Library and
Standard (SMT-LIB)

The growing interest and need for decision procedures such as those described
in this book led to the SMT-LIB initiative (short for Satisfiability-Modulo-
Theory Library). The main purpose of this initiative was to streamline the
research and tool development in the field to which this book is dedicated. For
this purpose, the organizers developed the SMT-LIB standard [162], which
formally specifies the theories that attract enough interest in the research
community, and that have a sufficiently large set of publicly available bench-
marks. As a second step, the organizers started collecting benchmarks in this
format, and today (2008) the SMT-LIB repository includes more than 60 000
benchmarks in the SMT-LIB format, classified into 12 divisions. A third step
was to initiate SMT-COMP, an annual competition for SMT solvers, with
a separate track for each division.

These three steps have promoted the field dramatically: only a few years
back, it was very hard to get benchmarks, every tool had its own language
standard and hence the benchmarks could not be migrated without trans-
lation, and there was no good way to compare tools and methods.1 These
problems have mostly been solved because of the above initiative, and, con-
sequently, the number of tools and research papers dedicated to this field is
now steadily growing.

The SMT-LIB initiative was born at FroCoS 2002, the fourth Workshop
on Frontiers of Combining Systems, after a proposal by Alessandro Armando.
At the time of writing this appendix, it is co-led by Silvio Ranise and Cesare
Tinelli, who also wrote the SMT-LIB standard. Clark Barrett, Leonardo de
Moura and Cesare Tinelli currently manage the SMT-LIB benchmark reposi-
tory. The annual SMT-COMP competitions are currently organized by Aaron
Stump, Clark Barrett, and Leonardo de Moura.

1 In fact, it was reported in [61] that each tool tended to be the best on its own set
of benchmarks.
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A C++ Library for Developing Decision
Procedures

B.1 Introduction

A decision procedure is always more than one algorithm. A lot of infrastructure
is required to implement even simple decision procedures. We provide a large
part of this infrastructure in form of the DPlib library in order to simplify
the development of new procedures. DPlib is available for download,1 and
consists of the following parts:

• A template class for a basic data structure for graphs, described in
Sect. B.2.

• A parser for a simple fragment of first-order logic given in Sect. B.3.
• Code for generating propositional SAT instances in CNF format, shown

in Sect. B.4.
• A template for a decision procedure that performs a lazy encoding, de-

scribed in Sect. B.5.

To begin with, the decision problem (the formula) has to be read as input by
the procedure. The way this is done depends on how the decision procedure
interfaces with the program that generates the decision problem.

In industrial practice, many decision procedures are embedded into larger
programs in the form of a subprocedure. We call programs that make use of
a decision procedure as a subprocedure applications. If the run time of the
decision procedure dominates the total run time of the application, solvers
for decision problems are often interfaced to by means of a file interface. This
chapter provides the basic ingredients for building a decision procedure that
uses a file interface. We focus on the C/C++ programming language, as all
of the best-performing decision procedures are written in this language.

The components of a decision procedure with a file interface are shown in
Fig. B.1. The first step is to parse the input file. This means that a sequence
of characters is transformed into a parse tree. The parse tree is subsequently

1 http://www.decision-procedures.org/
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checked for type errors (e.g., adding a Boolean to a real number can be con-
sidered a type error). This step is called type checking . The module of the
program that performs the parsing and type-checking phases is usually called
the front end.

Most of the decision procedures described in this book permit an arbitrary
Boolean structure in the formula, and thus have to reason about propositional
logic. The best method to do so is to use a modern SAT solver. We explain
how to interface to SAT solvers in Sect. B.4. A simple template for a decision
procedure that implements an incremental translation to propositional logic,
as described in Chap. 11, is given in Sect. B.5.

Front end

Parsing
Type

checking
Decision
procedure

Fig. B.1. Components of a decision procedure that implements a file interface

B.2 Graphs and Trees

Graphs are a basic data structure used by many decision procedures, and
can serve as a generalization of many more data structures. As an example,
trees and directed acyclic graphs are obvious special cases of graphs. We have
provided a template class that implements a generic graph container.

This class has the following design goals:

• It provides a numbering of the nodes. Accessing a node by its number is
an O(1) operation. The node numbers are stable, i.e., stay the same even
if the graph is changed or copied.

• The data structure is optimized for sparse graphs, i.e., with few edges.
Inserting or removing edges is an O(log k) operation, where k is the number
of edges. Similarly, determining if a particular edge exists is also O(log k).

• The nodes are stored densely in a vector, i.e., with very little overhead
per node. This permits a large number (millions) of nodes. However, adding
or removing nodes may invalidate references to already existing nodes.

An instance of a graph named G is created as follows:

#include "graph.h"
...

graph<graph_nodet<> > G;
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Initially, the graph is empty. Nodes can be added in two ways: a single node
is added using the method add node(). This method adds one node, and
returns the number of this node. If a larger number of nodes is to be added,
the method resize(i) can be used. This changes the number of nodes to i
by either adding or removing an appropriate number of nodes. Means to erase
individual nodes are not provided.

The class graph can be used for both directed and undirected graphs.
Undirected graphs are simply stored as directed graphs where edges always
exist in both directions. We write a −→ b for a directed edge from a to b, and
a ←→ b for an undirected edge between a and b.

Class: graph<T>
Methods: add edge(a, b) adds a −→ b

remove edge(a, b) removes a −→ b, if it exists
add undirected
edge(a, b)

adds a ←→ b

remove undirected
edge(a, b)

removes a ←→ b

remove in edges(a) removes x −→ a, for any node x
remove out edges(a) removes a −→ x, for any node x
remove edges(a) removes a −→ x and x −→ a, for any node

x

Table B.1. Interface of the template class graph<T>

The methods of this template class are shown in Table B.1. The method
has edge(a, b) returns true if and only if a −→ b is in the graph. The
set of nodes x such that x −→ a is returned by in(a), and the set of nodes
x such that a −→ x is returned by out(a).

The class graph provides an implementation of the following two algo-
rithms:

• The set of nodes that are reachable from a given node a can be com-
puted using the method visit reachable(a). This method sets the
member .visited of all nodes that are reachable from node a to true.
This member can be set for all nodes to false by calling the method
clear visited().

• The shortest path from a given node a to a node b can be computed with
the method shortest path(a, b, p), which takes an object p of type
graph::patht (a list of node numbers) as its third argument, and stores
the shortest path between a and b in there. If b is not reachable from a,
then p is empty.



274 B A C++ Library for Developing Decision Procedures

B.2.1 Adding “Payload”

Many algorithms that operate on graphs may need to store additional infor-
mation per node or per edge. The container class provides a convenient way
to do so by defining a new class for this data, and using this new class as a
template argument for the template graph. As an example, this can be used
to define a graph that has an additional string member in each node:

#include "graph.h"

class my_nodet {
public:

std::string name;
};
...

graph<my_nodet> G;

Data members can be added to the edges by passing a class type as a
second template argument to the template graph nodet. As an example,
the following fragment allows a weight to be associated with each edge:

#include "graph.h"

class my_edget {
int weight;

my_edget():weight(0) {
}

};

class my_nodet {
};
...

graph<my_nodet, my_edget> G;

Individual edges can be accessed using the method edge(). The following
example sets the weight of edge a −→ b to 10:

G.edge(a, b).weight=10;

B.3 Parsing

B.3.1 A Grammar for First-Order Logic

Many decision problems are stored in a file. The decision procedure is then
passed the name of the file. The first step of the program that implements
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id : [a-zA-Z $][a-zA-Z0-9 $]+

N-elem : [0-9]+

Q-elem : [0-9]∗.[0-9]+

infix-function-id : + | − | ∗ | / | mod
boolop-id : ∧ | ∨ | ⇔ | =⇒
infix-relop-id : < | > | ≤ | ≥ | =
quantifier : ∀ | ∃
term : id

| N-elem | Q-elem
| id ( term-list )
| term infix-function-id term
| − term
| ( term )

formula : id
| id ( term-list )
| term infix-relop-id term
| quantifier variable-list : formula
| ( formula )
| formula boolop-id formula
| ¬ formula
| true | false

Fig. B.2. Simple BNF grammar for formulas

the decision procedure is therefore to parse the file. The file is assumed to
follow a particular syntax. We have provided a parser for a simple fragment
of first-order logic with quantifiers.

Figure B.2 shows a grammar of this fragment of first-order logic. The
grammar in Fig. B.2 uses mathematical notation. The corresponding ASCII
representations are listed in Table B.2.

All predicates, variables, and functions have identifiers. These identifiers
must be declared before they are used. Declarations of variables come with a
type. These types allow a problem that is in, for example, linear arithmetic
over the integers to be distinguished from a problem in linear arithmetic over
the reals. Figure B.3 lists the types that are predefined. The domain U is used
for types that do not fit into the other categories.

B boolean
N0 natural
Z int
R real

BN unsigned [N]

BN signed [N]
U untyped

Fig. B.3. Supported types and their ASCII representations
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Mathematical Symbol Operation ASCII

¬ Negation not, !

∧ Conjunction and, &

∨ Disjunction or, |

⇔ Biimplication <=>
=⇒ Implication =>

< Less than <
> Greater than >
≤ Less than or equal to <=
≥ Greater than or equal to >=
= Equality =

∀ Universal quantification forall
∃ Existential quantification exists

− Unary minus -

· Multiplication *
/ Division /

mod Modulo (remainder) mod

+ Addition +
− Subtraction -

Table B.2. Built-in function symbols

Table B.2 also defines the precedence of the built-in operators: the op-
erators with higher precedence are listed first, and the precedence levels are
separated by horizontal lines. All operators are left-associative.

B.3.2 The Problem File Format

The input files for the parser consist of a sequence of declarations (Fig. B.4
shows an example). All variables, functions, and predicates are declared. The
declarations are separated by semicolons, and the elements in each declaration
are separated by commas. Each variable declaration is followed by a type (as
listed in Fig. B.3), which specifies the type of all variables in that declaration.

A declaration may also define a formula. Formulas are named and tagged.
Each entry starts with the name of the formula, followed by a colon and one
of the keywords theorem, axiom, or formula. The keyword is followed
by a formula. Note that the formulas are not necessarily closed : the formula
simplex contains the unquantified variables i and j. Variables that are not
quantified explicitly are implicitly quantified with a universal quantifier.
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a, b, x, p, n: int;
el: natural;
pi: real;
i, j: real;
u: untyped; -- an untyped variable
abs: function;
prime, divides: predicate;

absolute: axiom forall a: ((a >=0 ==> abs(a) = a) and
(a < 0 ==> abs(a) = -a)) ==>
(exists el: el = abs(a));

divides: axiom (forall a, b: divides (a, b) <=>
exists x: b = a * x);

simplex: formula (i + 5*j <= 3) and
(3*i < 3.7) and
(i > -1) and (j > 0.12)

Fig. B.4. A realistic example

B.3.3 A Class for Storing Identifiers

Decision problems often contain a large set of variables, which are represented
by identifier strings. The main operation on these identifiers is comparison.
We therefore provide a specialized string class that features string comparison
in time O(1). This is implemented by storing all identifiers inside a hash table.
Comparing strings then reduces to comparing indices for that table.

Identifiers are stored in objects of type dstring. This class offers most of
the methods that the other string container classes feature, with the exception
of any method that modifies the string. Instances of type dstring can be
copied, compared, ordered, and destroyed in time O(1), and use as much space
as an integer variable.

B.3.4 The Parse Tree

The parse tree is stored in a graph class ast::astt and is generated from a
file as follows (Fig. B.5):

1. Create an instance of the class ast::astt.
2. Call the method parse(file) with the name of the file as an argument.

The method returns true if an error was encountered during parsing.

The class ast::astt is a specialized form of a graph, and stores nodes of
type ast::nodet. The root node is returned by the method root() of the
class ast::astt. Each node stores the following information:
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#include "parsing/ast.h"

...

ast::astt ast;

if(ast.parse(argv[1])) {
std::cerr << "parsing failed" << std::endl;
exit(1);

}

Fig. B.5. Generating a parse tree

1. Each node has a numeric label (an integer). This is used to distinguish
the operators and the terminal symbols. Table B.3 contains a list of the
symbolic constants that are used for the numeric labels.

2. Nodes that contain identifiers or a numeric constant also have a string
label, which is of type dstring (see Sect. B.3.3). We use strings for the
numeric constants instead of the numeric types offered by C++ in order
to support unbounded numbers.

3. Each node may have up to two child nodes.

As described in Sect. B.2, the nodes of the graph are numbered. In fact,
the ast::nodet class is only a wrapper around these numbers, and thus
can be copied efficiently. The methods it offers are shown in Table B.4. The
methods c1() and c2() return NIL if there is no first or second child node,
respectively.

For convenience, the ast::astt class provides a symbol table, which is a
mapping from the set of identifiers to their types. Given an identifier s, the
method get type node(s) returns the node in the parse tree that corre-
sponds to the type of s.

B.4 CNF and SAT

B.4.1 Generating CNF

The library provides algorithms for converting propositional logic into CNF
using Tseitin’s method (see Sect. 1.3). The resulting clauses can be passed
directly to a propositional SAT solver. Alternatively, they can be written to
disk in the DIMACS format. The interface to both back ends is defined in the
propt base class. This class is used wherever the specific propositional back
end is to be left unspecified. Literals (i.e., variables or their negations) are
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Name Used for

N_IDENTIFIER Identifier
N_INTEGER Integer constant
N_RATIONAL Rational constant
N_INT Integer type
N_REAL Real type
N_BOOLEAN Boolean type
N_UNSIGNED Unsigned type
N_SIGNED Signed type
N_AXIOM Axiom
N_DECLARATION Declaration
N_THEOREM Theorem
N_CONJUNCTION ∧
N_DISJUNCTION ∨
N_NEGATION ¬
N_BIIMPLICATION ⇐⇒
N_IMPLICATION =⇒
N_TRUE True
N_FALSE False
N_ADDITION +
N_SUBTRACTION −
N_MULTIPLICATION ∗
N_DIVISION /
N_MODULO mod
N_UMINUS Unary minus
N_LOWER <
N_GREATER >
N_LOWEREQUAL ≤
N_GREATEREQUAL ≥
N_EQUAL =
N_FORALL ∀
N_EXISTS ∃
N_LIST A list of nodes
N_PREDICATE Predicate
N_FUNCTION Function

Table B.3. Numeric labels of nodes and their meanings
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Class: ast::nodet
Methods: id() Returns the numeric label

string() Returns the string label
c1() Returns the first child node
c2() Returns the second child node
number() Returns the number of the node
is nil() Returns true if the node is NIL

Table B.4. Interface of the class ast::nodet

stored in objects of type literalt. The constants true and false are re-
turned by const literal(true) and const literal(false), respec-
tively.

Class: propt
Methods: land(a, b) Returns a literal l with l ⇐⇒ a ∧ b

land(v) Given a vector v = 〈v1, . . . , vn〉, returns a
literal l with l ⇐⇒

∧
i
vi

lor(a, b) Returns a literal l with l ⇐⇒ a ∨ b
lor(v) Given a vector v = 〈v1, . . . , vn〉, returns a

literal l with l ⇐⇒
∨

i
vi

lxor(a, b) Returns a literal l with l ⇐⇒ a ⊕ b
lnot(a, b) Returns a literal l with l ⇐⇒ ¬a
lnand(a, b) Returns a literal l with l ⇐⇒ ¬(a ∧ b)
lnor(a, b) Returns a literal l with l ⇐⇒ ¬(a ∨ b)
lequal(a, b) Returns a literal l with l ⇐⇒ (a ⇐⇒ b)
limplies(a, b) Returns a literal l with l ⇐⇒ (a =⇒ b)
lselect(a, b, c) Returns a literal l with (a =⇒ (l ⇐⇒

b)) ∧ (¬a =⇒ (l ⇐⇒ c))
set equal(a, b) Adds the constraint a ⇐⇒ b
new variable() Returns a new variable
const literal(c) Returns a literal with a constant Boolean

truth value given by c

Table B.5. Interface of the class propt

The interface of the class propt is specified in Table B.5. The classes
satcheckt and dimacs cnft are derived from this class. An implemen-
tation of a state-of-the-art propositional SAT solver is given by the class
satcheckt. The additional methods it provides are shown in Table B.6.
The class dimacs cnft is used to store the clauses and dump them into a
text file that uses the DIMACS CNF format. Its interface is given in Table B.7.
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Class: satcheckt, derived from propt

Methods: prop solve() Returns P SATISFIABLE if the formula is
SAT

l get(l) Returns the value of l in the satisfying as-
signment

solver text() Returns a string that identifies the solver

Table B.6. Interface of the class satcheckt

Class: dimacs cnft, derived from propt

Methods: write dimacs
cnf(s)

Dumps the formula in DIMACS CNF for-
mat into the stream s

Table B.7. Interface of the class dimacs cnft

B.4.2 Converting the Propositional Skeleton

The propositional skeleton (see Chap. 11) of a parse tree can be generated
using the class skeletont. This offers an operator (), which can be applied
as follows, where root node is the root node of a formula, and prop is an
instance of propt:

#include "sat/skeleton.h"

...

skeletont skeleton;

skeleton(root_node, prop);

Besides converting the propositional part, the method also generates a vector
skeleton.nodes, where each element corresponds to a node in the parse
tree. Each node has two attributes:

• The attribute type is one of PROPOSITIONAL or THEORY, and distin-
guishes the skeleton from the theory atoms.

• In the case of a skeleton node, the attribute l is the literal that encodes
the node.

B.5 A Template for a Lazy Decision Procedure

The library provides two templates for decision procedures that compute
a propositional encoding of a given formula ϕ in the lazy manner. These
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algorithms are described in detail under the names Lazy-DPLL (Algo-
rithm 11.2.2) and DPLL(T ) (Algorithm 11.2.3) in Chap. 11.

We first define a common interface for any kind of decision procedure. This
interface is defined by a class decision proceduret (Table B.8). This class
offers a method is satisfiable(ϕ), which returns true if and only if the
formula ϕ is satisfiable. If so, one may call the methods print assign-
ment(s) and get(n). The method print assignment(s) dumps the en-
tire satisfying assignment into a stream, whereas get(n) permits querying
the value of an individual node n of ϕ.

Class: decision proceduret
Methods: is satisfiable(ϕ) Returns true if the formula ϕ is found to

be SAT
print
assignment(s)

Dumps the satisfying assignment into the
stream s

get(n) Returns the value assigned to node n of ϕ

Table B.8. Interface of the class decision proceduret

Class: lazy dpllt, derived from decision proceduret

Methods: assignment(n, v) This method is called by the SAT solver
for every assignment to a Σ-literal in ϕ.
The node it corresponds to is n; the value
assigned is given by v.

deduce() This method is called once a satisfying as-
signment to the current propositional en-
coding is found.

add clause(c) Called by deduce() to add a clause as
a consequence of a T -inconsistent assign-
ment

Members: f A copy of ϕ
skeleton An instance of skeletont

Table B.9. Interface of the classes lazy dpllt and dpll tt, which are imple-
mentations of Lazy-DPLL (Algorithm 11.2.2) and DPLL(T ) (Algorithm 11.2.3).
The theory T is assumed to be defined over a signature Σ

The templates that we have provided implement two of the algorithms
given in Chap. 11: Lazy-DPLL and DPLL(T ). These templates include the
conversion of the propositional skeleton of ϕ into CNF, and the interface to
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the SAT solver. We provide a common interface to both algorithms, which is
given in Table B.9.

Class: dpll tt, derived from decision proceduret

Methods: deduce() This method is called by the SAT solver
to check a partial assignment for T -
consistency.

add clause(c) Called to add a clause as consequence of
assignment

theory
implication(n,
v)

Called to communicate a T -implication to
the SAT solver: n is the node implied, and
v is the value.

Members: f A copy of ϕ
skeleton An instance of skeletont

Table B.10. Interface of the class dpll tt, an implementation of DPLL(T ) (Al-
gorithm 11.2.3)

The only part that is left open is the interface to the decision procedure for
the conjunction of Σ-literals. In the case of both algorithms, this is the method
deduce(). The assignment to the Σ-literals is passed from the SAT solver
to the deductive engine by means of calls to the method assignment(n,
v), where n is the node and v is the value that is assigned.

The method deduce() inspects this assignment to the Σ-literals. If it is
found to be consistent, deduce() is expected to return true. Otherwise, it
is expected to add appropriate constraints using the method add clause,
and to return false.

In the case of Lazy-DPLL, deduce() is called only for full assignments,
whereas DPLL(T ) may call deduce() for partial assignments.
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